

INSTALLATION AND SERVICE MANUAL

TYPE 128X SERIES AUDIO

20 Watt AMPLIFIERS

LANGEVIN, division of sonotec, inc.

SERVICE-AND INSTALLATION MANUAL FOR LANGEVIN TYPE I28X SERIES AMPLIFIERS

general
The Langevin Type 128X series amplifiers are 20 -watt units designed for operation in high-quality sound systems. Design features make these amplifiers adaptable to the varied requirements of sound installations. These features include interchangeable input panels for line matching or bridging, for lowimpedance microphone or phono pickup inputs of 30 or 250 ohms impedance, for high-impedance inputs, such as high-impedance microphones, phono pick-ups, and radio tuners, and for broadcast-type monitor use.

These input panels, while interchangeable, must be mounted on the basic amplifier and wired into the circuit. The low output noise level and low internal output impedance permits the use of the 128 x amplifier as a power unit to drive a low impedance buss across which a number of power amplifiers can be bridged in large sound installations. The Type 128 X series amplifier can be either rack or cabinet mounted.

BASIC 128X AMPLIFIER

gENERAL CHARACTERISTICS

The electrical characteristics of the 128 X amplifier are dependent upon and vary with the particular type of input panel in use. These electrical characteristics are given in detail in the following service data for the individual input panels.

The basic 128X amplifier is a three stage amplifier consisting of a $6 \mathrm{SJ7}$ voltage amplifier, a 6 V 6 phase inverter and driver, and push-pull 6L6 tubes in the final power amplifier stage. Quiet. low-distortion performance over a wide frequency range at rated power output (20 Hatts) highlights the electrical characteristics which make these amplifiers desirable where fine sound reinforcement or reproduction is requiren.

All transformers are especially made for these units in our own transformer shops, to insure full control over the manufacturing process, including winding, impregnating, potting and testing. Potted coils assure longer life and uniform characteristics despite variations in temperature and humidity.

Electrically, this amplifier has low noise level (78 db below full output) and excellent transient response. Each amplifier is tested for distortion at rated output over the entire frezuency range from 50 to 15,000 cycles, assuring full performance at the frequency extremes as well as over the midile range.

Since gain-per-stage measurements will vary with the particular conditions existing at the time of measurements, such as type of equipment used and variations in line voltage, the values given are to be considered as average values and may vary by an appreciable amount. These figures will be valuable as references in making the service checks on the amplifiers.

Good regulation of output is provided in the Langevin 128 X series by the very low internal output impedance. The change in output level from a condition of no load to a condition of full load is only 1 db . In addition, a new circuit, incorporating direct coupling between the voltage amplifier and phase splitter stages, minimizes circuit components and provides maximum gain and reliability.

The power supply uses a 5U4G rectifier tube and is filtered so that less than 0.1% ripple is present in the output of the B supply. The power transformer is tapped with different input terminals for the 105-115 V range, and the 115-125 V range, thus assuring a constant value of B voltage over this wide range of input voltage.

The output transformer is tapped so that loads from 1 ohm up to 1200 ohms may be matched for maximum output power.

Chassis layout has been arranged to reduce interconnecting wiring to a minimum, thus providing maximum accessibility to all parts and connections. The chassis is constructed of 16 gauge, bonderized steel, finished inside and out with baked-on grey enamel. Components have been selected with high safety and overload factors, thereby providing economical operation by reducing service calls. The 128 X amplifier can be mounted on a standard 19 inch equipment rack or it can be housed in a wall - or shelf - mounting cabinet.
$128 \times$ SERIES AMPLIFIER ELECTRICAL CHARACTERISTICS

UNIT DESIGNATION	SOURCE IMPEDAHCE	MAXIMMM OVER-ALL GAIN	$\begin{aligned} & \text { FREQUENCY } \\ & \text { RESPOHSE } \\ & 30-15000 \mathrm{CPS} \end{aligned}$	$\begin{aligned} & \text { OUTPUT NOISE } \\ & \text { BELOW FULL } \\ & \text { OUTPUT LEYEL } \end{aligned}$	$\begin{aligned} & \text { INPUT } \\ & \text { SIGNAL } \\ & \text { LEVEL } \end{aligned}$	$\begin{gathered} \text { HARMONIC } \\ \text { DISTORTION } \\ 50-10000 \mathrm{CPS} \end{gathered}$	general INFORMATION
128X-A	600 ohms 600 ohes bridging	63 db matching 600 ohes 45 db bridging 600 ohms	$\pm 1.0 \mathrm{db}$	78 db	$-20 \mathrm{dbra}$ (600 ohm input)	20 watts less than $2 \% 15$ watts less than 1\%	Provides for line level input
$128 \mathrm{X}-\mathrm{B}$	$30 \text { or } 250$ ohms	103 db	$\pm 1.0 \mathrm{db}$	55 db	-60 dbm	Same as 128X-A	Provides for low impedance impats. Volume controlled remotely to a distance of 5000 ft .
128X-E	1 neg ohm	116 db	```\pm1.5 db (from 100,000 ohm source impedance)```	60 db	13 MV at 400 cps	Same as 128x-A	Provides for high impednnce inputs, crystal wicrophones or other high imperance 10 w level signal source
$128 \mathrm{X}-\mathrm{H}$	6800 ohms input frow variable reluctence type phono pick-up	103 db	See Fig. A	55 db	$\begin{aligned} & 5.8 \text { yV } \\ & \text { at } 400 \\ & \mathrm{cps} \end{aligned}$	Same as 128 ${ }^{\text {- }}$ A	Provides for General Electric variable reluctance phono pickup or pickering cartridge pick-up
$128 \mathrm{X}-\mathrm{J}$	1 meg ohn (max.)	76 db	$\pm 1.5 \mathrm{db}$	60 db	1-6 volts	Sane as 128x-A	Provides for bigh imped ance input for radio tuners and equivalent input devices
128X-R	"T" pad matched to 30. 150 . 250 or 600 ohns	62 db	$\pm 1.0 \mathrm{db}$	73 db	-20 dbm	Same as 128X-A	Monitor Amplifier
128 \times - Q	$\begin{aligned} & 30,150, \\ & 250 \text { or } 600 \\ & \text { ohms } \end{aligned}$	62 db	$\pm 1.0 \mathrm{db}$	75 db	$-20 \mathrm{dbm}$	Same as 128 X - A	Monitor or Booster Manplifier for recording or sound systems

I $28 \times$ BASIC AMPLIFIER

VOLTAGE AND RESISTANCE OF BASIC 128 AMPLIFIER

INPUT PANELS FOR LANGEVIN AMPLIFIER TYPE I28X SERIES

In the design of the $128 x$ series of amplifiers, provisions have been made for two input channels. These channels are furnished as separate input panels which are interchangeable on the ampifier. Six different types of input panels are available, any two of which may be used at one time. The type numbering of the 128 X series varies with the input panels connected to the basic amplifier unit. For example, the basic unit with a line level input panel type A, would be a $128 \mathrm{X}-\mathrm{A}$ amplifier; with a line level input panel Type A, and a high-impedance pre-amplifier panel Type E, it would be a 128X-AE. A basic amplifier with two low impedance pre-amplifier inputs Type B would be a $128 \mathrm{X}-\mathrm{BB}$, etc. The input panels and their designations follow.

DESCRIPTION

TYPE A
Line level input panel with transformer connections for matching 600 ohms, or bridging 600 ohms (equipped with volume control).

TYPE B

TYPE E

TYPE H

TYPE J

TYPE R

TYPE Q
,

Pre-amplifier input panel for source impedances of $30 / 250$ ohms (equipped with volume control).

Pre-amplifier input panel for high impedance inputs (equipped with volume control).

Preamplifier, equalizer input panel for variable reluctance type pickup (equipped with volume control).

Input panel for high impedance inputs such as radio tuners or their equivalent (equipped with volume control).

Input panel for monitor (broadcast use) for source impedance of $30 / 150 / 250 / 600$ ohms.

Input panel for monitor or booster use for source impedance of $30 / 150 / 250 / 600$ ohms.

INSTALLATION INSTRUCTIONS FOR THE I28X BASIC AMPLIFIER

ELECTRICAL CONNECTIONS

Before the $128 x$ amplifier can be placed in operation, the following electrical connections must be made in order to apply a-c power for operating voltages, and to provide an output load for the audio signals.

1. Connect an a-c power cord to the two terminals on the a-c input terminal strip shown in Figure 3.
2. Connect the required output load (loudspeaker's or other) to the terminals on the amplifier output terminal strip (Fig. 3).

The manner in which the input signal devices are connected is described in the text on the individual input panels.

OUTPUT IMPEDANCE STRAPPING

Connect the output leads to the terminals marked A and B on the output terminal strip (Fig. 3). Bring the leads into the amplifier by punching out the knoskout on the rear-right side of the chassis.

The amplifier is shipped with output impedance strapping for 600 ohms as shown in the basic schematic diagram, Fig. 2. Strapping for other output impedance values is shown in the following chart.

Slide the amplifier chassis into the cabinet with the end flanges of the chassis between the 2 end rails on each side of the cabinet interior. Bolt the chassis into place, using the 2 holes provided in the end rails.

Fasten the cabinet cover into place by means of the 2 knurled panel screws, or by the spring mounting clips, whichever are used.

RACK MOUNTING

When the amplifier is to be rack mounted, Modification Group Type 21 is required. This modificationkit includes brackets to remount the power switch, pilot light, and volume controls; and a mat panel.

Remove the volume controls, power switch, and the pilot light from the chassis and fasten them in the corresponding holes on the two mounting brackets. Note that these components are mounted directly on the brackets and are not fastened to the mat panel.

To effect the modification, mount the narrow bracket with the 2 small holes over the resistor strip as shown in the diagram (Fig. 5) and bolt it into place by means of the two existing bolts in the bottom of the chassis. Remove the power escutcheon plate from the chassis exposing two small mounting holes. Mount the remaining bracket as shown in Fig. 5 by means of these small mounting holes. Place the amplifier chassis in the rack and bolt it into place using the extreme top and bottom slots on the end flanges. Place the mat panel over the chassis and bolt it to the rack through the two center slots on the flange. Mount the two escutcheon plates with the volume control to the left facing the rack and the pilot light and on-off switch to the right as shown in Fig. 5.

Fig. 5

INPUT PANEL TYPE A

INSTALLATION

Mount the input panel in the space provided at the left hand side of the amplifier chassis when facing the front of the amplifier as shown in Fig. 1. Select any 3 terminals not in use on the basic amplifier terminal strip. (7, 8 and 9 are used here for demonstration.) Connect the indicated points on the A input panel resistor strip (Fig. 7) to terminals 8 and 9 on the input termi-

INPUT PANEL TYPE B

InSTALLATION

Connect the filament leads of the B panel to the filament lugs " e^{n} and " f ". Connect the red-dot terminal on the resistor strip to point " b^{n} shown on the schematic for the basic amplifier; .Fig. 2. Connect one side of the 0.05 mfd canacitor (sur plied) to the green-dot terminal on the resistor strip and the other side of this capacitor to point " $a^{\text {" }}$ on the basic amplifier schematic. Connect resistor R9 from point "an to ground of basic amplifier. When unbalanced input is used, ground terminal 1 of the input transformer.

Select any four adjacent terminals not in use on the basic amplifier input terminal strip (for demonstration purposes we shall select terminals 1, 2, 3 and 4). Connect terminals 1, 2 and 3 of the input transformer (Fig. 8) to terminals 1, 2, 3 respectively, of the input terminal strip. Connect terminal 4 of the input terminal strip to the white dot terminal on the B resistor strip, and to the right-hand lug on the volume control (as viewed from the bottom with lugs upright).

nal strip of the basic amplifier. The unattached lead No. 3 from the input transformer connects to terminal 7 on the basic amplifier terminal strip. Mount the volume control in the space provided on the left front side of the amplifier chassis, and connect it to the input panel resistor strip and to points ${ }^{\prime} a$ " and " g " on the basic amplifier as indicated in Figures 2, 6 and 7.

Terminal 10 on the input terminal strip should be grounded at all times. Connect terminal 10 to the black-dot terminal on the B resistor strip and also to the center terminal on the volume control. Connect the 20 K ohm resistor, R8, across the outside terminals of the volume control.

INPUT PANEL TYPE E

INSTALLATION

Select two terminals on the input terminal strip (for demonstration, assume terminals 4 and 6). Connect the black-dot terminal on the E resistor strip to input terminal 6 , then connect terminal 6 to terminal 10 (ground). Connect the white-dot terminal on the E resistor strip to input terminal 4, and connect 4 to the right-hand lug on the volume control (viewed from bottom with lugs upright). Connect the center lug of the volume control to ground. Connect the 20 K resistor across the outside terminals of the volume control. The filament leads are wired to " $e^{\prime \prime}$ and " f " as in the case of the B panel, and the red-dot terminal on the Estrip is connected to point "b" shown on the basic schematic. The 0.05 mfd coupling capacitor is connected from the green-dot terminal on the resistor strip to point ${ }^{n} a^{n}$ on the basic schematic.

INPUT PANEL TYPE H

INSTALLATION

Install the panel in the space provided on the basic amplifier. Connect the high side of the input lead directly to the yellow-dot terminal on the panel resistor strip. Connect the other input lead to ground as represented by the black-dot on the resistor strip and connect the black-dot terminal to point " g " on the basic amplifier. Connect the filament leads to points ${ }^{\prime} e^{n}$ and " f " on the basic amplifier. Connect the red-dot terminal to point ${ }^{n} b^{n}$ on the basic amplifier. Mount the 250 K volume control, R11, in the proper place on the basic amplifier chassis and connect the two outside terminals to points " a^{\prime} and " g " on the basic amplifier, as shown in Fig. 13. Connect the 100 K resistor 12 from the green-dot terminal on the panel resistor strip to the movable arm of the volume control (Fig. 13).

Connect resistor $R 9$ from point " a " to ground of
the basic amplifier.

VOLTAGE AND RESISTANCE OF E INPUT PANEL
 voltage and resistance

TUBE	PIN	VTVM	RESISTANCE
1612	1	GND	0
or	2	3. 15 vac	0.098
6L7	3	+220 v.	390K
	4	+76 v.	50K
	5	+44 v.	20K
	6	-	-
	7	3. 15 vac	0.098
	8	+44 V.*	20K *
	Grid Cap	0	1 M 8

- Varies with V.C. setting

TUBE
PIN

1 MR

VOLTAGE AND RESISTANCE OF
H IMPUT PANEL

TUBE	PIN	VTVM	RESISTANCE
$6 S L 7$	1	0	$7 K$
	2	$105 V$	420 K
	3	1.5 V	4 K
	4	0	700 K
	5	$105 V$	420 K
	6	$1.5 V$	4 K
	7	3.15 vac	0.09Ω
	8	3.15 vac	0.098

INPUT PANEL TYPE J

Fig. 14

INSTALLATION

Mount the panel in the space provided at the left hand side of the amplifier chassis when facing the front of the amplifier as shown in Fig. 1. Connect point 1 on the J panel to " $g^{\prime \prime}$ and point 2

INPUT PANEL TYPE Q

Fig. 16

INSTALLATION

Mount the panel in the appropriate blank space indicated in Figure 1. Select 2 terminals not in use on the basic amplifier terminal strip. (1\&2 used here for demonstration). Connect $1 \& 5$ of panel to $1 \& 2$ of basic amplifier terminal strip. Match input impedance using table below. Connect output lead from arm of volume control to point " $a^{\prime \prime}$ (grid) on the basic amplifier. Connect other output lead (6 on panel) to point " g " on basic amplifier.

Fig. 15
15

Mount volume control, R-2 on the front of the 128X amplifier in the space provided.

Fig. 17

INPUT
IMPEDANCE
:---:
CONMECTIONS

600 ohms Slate (1) \& Red (5)
250 ohms Slate (1) \& Purple (4)
150 ohms Slate (1) \& Red (5)
30 ohms Purple (4) \& Red (5)

STRAPPING

Yellow(2) \& Brown(3) Yellow(2) \& Brown(3) Slate(1) \& Brown (3) Yellow(2) \& Red(5)

INPUT PANEL TYPE R

Fig. 18

INSTALLATION

Mount the panel in the space provided at the left hand side of the amplifier chassis when facing the front of the amplifier as shown in Fig. 1. Connect a properly matched " T " pad to the input transformer as shown in table. Connect the leads from the input device to the input of the " T " pad. Connect the output lead from point 7 on Fig. 18 to point " g " and the other output lead from point 9 on Fig. 18 to point "a" (grid) on the basic amplifier.

Fig. 19

ELECTRICAL PARTS LISTS

PARTS LIST FOR 128X BASIC AMPLIFIER

REF

Cap, 16 mfd elec, 600 dcw
Cap, $50 \mathrm{mfd}, \mathrm{elec}, 450 \mathrm{dcwr}$ Cap, elec, 2 sect 40 mfd 450 dc
40 mfd .450 dcwv
Cap, 50 mfd elec, 450 dcwv
Cap, elec, 3 -sect $80-80 \mathrm{mfd}$ 50dcwv
80mfd 50 dcwv
Cap, oil paper 0. 25mfd 600 dcwv
Cap, oil paper imfd 600 dcw
Cap, oil paper 1mfd 600dewv
Cap, mica $100 \mathrm{mmf} \pm 10 \%$ 600 dcw
Res. ww. 2000 ohms $\pm 10 \%$ 75 watt
Res. ww. 13, 000 ohms
$\pm 10 \% 75$ watt
Res. carbon, 47,000 ohms
$\pm 5 \% 1$ watt
Res. carbon, 1600 ohms
$\pm 5 \% 1$ watt
Res. 260 ohms $\pm 10 \% 17.5$ w
Res. carbon, 100,000 ohms
$\pm 5 \% 1$ watt
Res. carbon, 10,000 ohms
$\pm 5 \% 2$ watt
Res. carbon, $20,000 \mathrm{ohms}$
$\pm 5 \% 1$ watt
Res. rarbon, 270,000 ohms
$\pm 5 \% 1$ watt
Res. carbon, 1 N ohms
$\pm 5 \%$ watt
Res. carbon, 1000 ohms
$\pm 5 \% 1$ watt
Res. Ww. 150 ohms $\pm 10 \% ~ 25 w$
Transformer, Power
Transformer, Output
Fuseholder
Switch, toggle, bat handled
Tube type 6SJ7
Tube type 6V6GT
Tube type 6L6GA
Tube type 6L6GA
Tube type 5U4G
Socket, octal, bakelite-mica filled
Socket, octal, bakelitemica filled
Socket, octal, bakelitemica filled
Socket, octal, bakelitemica filled
Socket, octal, bakelitemica filled

MANUFACTURER

PARTS LIST FOR INPUT PANEL TYPE A

REF
SYMBOL

SYMBOL	OESCRIPTION
R1-1A	Res. carbon, 12,0006
	$\pm 5 \%$ 1/2 watt
R2-1A	Res, carbon, 3008
	$\pm 5 \%$ 1/2 watt
R3-1A	Res, carbon, 300,0008
	$\pm 5 \%$ 1/2 watt
R4-1A	Res, carbon, 51,0008
	$\pm 5 \%$ 1/2 watt
R5-1A	Res, variable,
	250 K 8
T1-1A	Transf, input

Res. carbon, 12,0008 $\pm 5 \%$ 1/2 watt
$\pm 5 \% ~ 1 / 2$ watt
Res, carbon, 300,0008
$\pm 5 \% 1 / 2$ watt
Res, carbon. 51,0008
\pm 5
250 K 8
Transf, input

MANUFACTURER

PARTS LIST FOR INPUT PANEL TYPE B
REF
SYMBOL
DESCRIPTION
C1A-1B
C1B-1B
C1C-1B
C2-1B
C3-1B
C4-1B
R1-1B
R2-1B
R3-1B
R4-1B
R5-1B
R6-1B
R7-1B
R8-1B
R9-1B
T1-1B
V1-1B
X1-18

MANUFACTURER

Sprague	DFP
Goodall	M503
Goodall	M503
Goodall	M503
Allen Bradley	EB
Allen Bradley	VC-3
Allen Bradley	GB
Allen Bradley	GB
Langevin	$402-B$

PARTS LIST FOR INPUT PANEL TYPE E
REF

SYMBOL	DESCRIPTION	MANUFACTURER	
C1A-1E	Cap, elect, 3-sect 10 f 350 demv		
C1B-1E	$10 \mu \mathrm{f} 350 \mathrm{dcwv}$		
C1C-1E	$20 \mu f$ 25dcwv	Sprague	DFP
C2-1E	Cap, paper		
C3-1E	$0.05 \mu \mathrm{f} 600 \mathrm{dcwr}$	Goodall	M503
R1-1E	Res, carbon 1 M8 $\pm 10 \% 1$ watt	Allen Bradley	GB-1050
R2-1E	Res, carbon, 510月 $\ddagger 5 \%$ 1/2 watt	Allen Bradley	EB
R3-1E	Res, carbon, 33,000\& $\pm 10 \% 1 / 2$ watt	Allen Bradl ey	EB
R4-1E	$\begin{aligned} & \text { Res, carbon, } 150,0008 \\ & \pm 10 \% 1 / 2 \text { watt } \end{aligned}$	Allen Bradley	EB
R5-1E	Res, carbon, 270,0008 $\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R6-1E	Res, carbon, 47,0008 $\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R7-1E	Res, variable, 40008 linear, open in cew position.	Allen Bradley	VC-3
R8-1E	Res, carbon, 22.000* $\pm 10 \% 1$ watt	Allen Bradley	GB-
R9-1E	Res, carbon, 240,000 $\pm 5 \% 1$ watt	Allen Bradley	GB
J 1-1E	Connector, input	Amphenol	75-CL-PC1M
V1-1E	Tube type 1612 or 6L7		
X1-1E	Socket, octal bakelite		

PARTS LIST FOR INPUT PANEL TYPE H

REF SYMBOL	DESCRIPTION	MANUFACTURER	
C2-1H	Cap, elect.		
	25 μ f 25dcwv	Sprague	TA-25
C3\&C6-1H	Cap, paper		
	$0.05 \mu \mathrm{f} 600 \mathrm{dcwv}$	Goodall	M-503
C4-1H	Cap, paper		
	$0.03 \mu \mathrm{f} 400 \mathrm{dcwv}$	Goodall	M-503
C5-1H	Cap, elect		
	25uf 25dcwv	Sprague	TA-25
C1A-1H	Cap, elect, 2-sect		
C1B-1H	$20 \mu \mathrm{f} 450 \mathrm{dcw}$	Sprague	DFP
R1-1H	Res, carbon, 470 K $\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R2-1H	Res, carbon, 3,9008		
	$\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R3-1H	Res, carbon, 100,00018 $\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R4-1H	Res, carbon, 270,0008		
	$\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R5-1H	Res, carbon, 220,0008 $\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R6-1H	Res, carbon, 470,0008		
	$\pm 10 \% 1 / 2$ watt,	Allen Bradley	EB
R7-1H	Res, cartion, 10,0008		
	$\pm 10 \%$ 1/2 watt	Allen Bradley	ER
R8-1H	Res, carbon, 3,900\%		
	$\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R9-1H	Res, carbon, 270,000\%		
	$\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
R10-1H	Res, carbon, 100,000\%		
	$\pm 10 \% 1 / 2$ watt	Allen Bradley	
R11-1H	Res, var, 250,0008	Allen Bradley Type J	VC-11
R12-1H	Res, carbon, 100,0008		
	$\pm 10 \% 1 / 2$ watt	Allen Bradley	EB
V1-1H	Tube type 6SL7		
X1-1H	Socket, octal Bakelite		

PARTS LIST FOR INPUT PAKEL TYPE J

REF

SYMBOL DESCRIPTION

R1-1J	Res, variable, $1 M^{8}$
R2-1J	Res, variable, $1 M_{8}$
R3-1J	Res, carbon, 300,0008
	$\pm 5 \% 1 / 2$ watt
J1-1J	Connector, input

J1-1J
Res, variable, $1 \mathrm{~m}^{8}$
Res, carbon, 300,0008
Connector, input

PARTS LIST FOR INPUT PANEL TYPE Q
REF
SYMBOL
R1-1Q
R2-1Q
T1-1Q

DESCRIPTION
Res, carbon 180,000 ohms $\pm 10 \%$ 1/2 watt
Res, variable 100,000 ohms 2 watts, audio taper Input transformer

MANUFACTURER

All en Bradley	EB
Allen Bradley	JA- 1041-P3048
Langevin	$408-$ A

PARTS LIST FOR INPUT PANEL TYPE R
REF
SYMBOL
R1-1M Res. carbon, 6208
R2-1M
R3-1M
R4-1M
T1-1M
$\pm 5 \% 1 / 2$ watt
Res, carbon, 100,0008
$\pm 5 \%$ 1/2 wat
Res, carbon, 75,0008 $\pm 5 \%$ 1/2 watt
Transformer, input

MARIJFACTURER

Allen Bradley Type	JA- 1052-P3048
Allen Bradley Type	JA-1052-P3048
Allen Bradley	EB
Amphenol	$75-$ CL-PCIM

JA- 1052-P3048

EB
75-CL-PC1M

