
peerless electrical products - a division of Alitile

IWDEX to perrless transformers

NOTE: Separate price list includes a page index of individual items.
INDEX PAGE
20-20 PLUS Line 8, 9
20-20 Line. 10, 11, 12
Audio Reactors (L) 6, 7
Auto-Transformers (A) 5
Broadcast Transformers (20-20 PLUS) (20-20) 8, 9, 10, 11, 12
Bridging Transformers (K) (G) 12
Chokes Power (C) 5
Audio (L) 7
Combination Plate and Filament (R) 4, 15
Custom Transformers. 14
Data on RTMA 70v. Line 13
Data on Transformers 5
Equalizing Reactors (Audio) (L) 7
Filament Transformers (F) 4. 15
Four Hundred Cycle Power (F) (R) (T) 15
Hermetically Sealed Transformers (F) (R) (T) 15
Hybrid Transformers (E) 8
Impedance Matching Transformers (E) 6, 7, 8, 12
Input Transformers (K) 6, 8, 10
Interstage Transformers (G) 6, 10
Isolation Transformers (T). 4, 15
Matching (Impedance) Transformers (E) 6, 7, 8, 12
Output Transformers (S) 7, 8, 9, 11
Plate Transformers (P) 5
Plate and Filament Transformers (R) 4, 15
Replacement Power Transformers (R) 4
RTMA 70v. Line, Data 13
RTMA 70v. Line, Transformers (E) (S) $6,7,11,12$
Smoothing Chokes (C) 5
Special Transformers. 15
Voltage Correcting Auto Transformers (A) 5

A	Auto Transformers	G	Interstage Transformers	R	Replacement Power (Comb.
C	Smoothing Chokes	K	Input Transformers		Plate \& Filament)
E	Matching Transformers	L	Equalizing Reactors	S	Output Transformers
F	Filament Transformers	P	Plate Transformers	T	Isolation Transformers

Over the past few years Peerless transformers have achieved the reputation of being the finest transformers available on the market. This enviable reputation has been maintained solely through constant engineering and continued attention to quality control on the production line.

The remarkable new transformers described in this catalog are the result of continuing research towards product improvement. This research is also responsible for Peerless' ability to manufacture custom transformers of the most difficult design. The scope of this operation is fully covered on Page 14.

(1) New 20-20 PLUS

These transformers represent the most important development in the Peerless line for 1953. They continue to include all the famous feafures of the well known Peerless 20-20 line, PLUS wider frequency range, PLUS improved efficiency, PLUS smaller size, PLUS increased power rating, PLUS greater value.

For example, the new input transformer occupies less than half the space of its predecessor, yet it will handle one hundred times the power, and has a frequency range extending from 10 cycles to 30,000 cycles. In addition the balance on the primary winding has been improved to provide a line termination of repeating coil quality. Combined with all this, it has a streamlined case with the simplest of terminal and mounting arrangements. Suggested uses for this versatile input transformer include low level output and bridging service.

Although there are only six transformers in this new 20-20 PLUS group, their design is such as to provide a wide range of application.
(1) New Super Standard Audio

In addition to the other transformers listed in
the "Audio" section on Page 7, there are three new output transformers indicated by the symbol ()

A careful examination of the characteristics and specifications of these new units will prove interesting to the most critical user.

(1) New Miniaturized Power

Small size is ever more important with the increased complexity of electronic equipment. Four new plate and filament transformers in the " R " series have been miniaturized as far as possible without making a single concession to temperature rise, reliability or economy of cost. They are identified on Page 4 by the symbol (1). For those who have miniaturization problems, these new units will prove invaluable.
(1) New 400 Cycle Hermetically Sealed Power

On Page 15 are listed six special additions to the already extensive Peerless line. These 400 cycle hermetically sealed power transformers which are available for both single phase and three phase circuits, meet all JAN-T-27 and MIL-T-27 requirements and have proven their acceptance through wide use by the aviation industry.

POWER
 PEERLESS TRANSFORMERS

(Continued on Poge 5)

PEERLESS TRANSFORMERS

(1) New, Special Feature, item.
** All primaries are $11 \mathrm{IV}, 60$ cycle.
\dagger All transformers in this group are supplied with electro-static shield.
\ddagger Low flux-density core for pre-amplifiers.
${ }_{2}^{1}$ CCS-Continuous duty.
${ }^{2}$ ICAS-Intermittent duty (20\% duty cycle).
${ }^{3}$ No center tap on second winding.
Θ Choke input to filter.

PEERLESS TRANSFORMERS

Wt. Lb.	Dimensions, In.			Freq.Ronge	Impedance, Ohms		Audio Watts		$\begin{gathered} \text { Descriptive } \\ \text { Dafa } \end{gathered}$	Number	IMPEDANCEMATCHINGTRANSFORMERS
	H	D	w		Pri.	Sec.	Max.	Line			
41/4	3\%	3	$31 / 4$	$\begin{gathered} 30 \\ 15,000 \end{gathered}$	$\begin{array}{cc} & 1600 \text { C.T. } \\ & 1200 \\ 10 & 800 \text { C.T. } \\ & 400-200 \end{array}$	$\underset{\star}{16-12-8} 4$	24	$\begin{gathered} 3-4 \\ 6-12 \\ 24 \end{gathered}$	Line to SpeakerRTMA Standardized line. Insertion Loss 0.6 db . Max.	E-386-E	
9	43/4	47/8	3\%	$\begin{gathered} 30 \\ 15,000 \end{gathered}$		$\begin{array}{lc} 0 & 16-12-8 \\ 6 & 4-2 \end{array}$	64	$\begin{gathered} 8-11 \\ 16-32 \\ 64 \end{gathered}$	Same Data as E-386-E.	E-392-E	
				D.C. MA		$\underset{\substack{\text { Ind. } \\ \text { Henrys }}}{ }$	$\begin{gathered} \text { Ros. } \\ \text { Ohms } \end{gathered}$				REACTOR EOUALIZING
				Normal Max.							
\%	134	1\% Round			010	4	725		Low Pass Filter.	L-370-D	
				Audio	Impedance, Ohms		Pri. D.C. MAPor Winding $\begin{gathered}\text { Freq. } \\ \text { Max. Unbal. } \\ \text { Rango } \\ \pm 1 \text { db }\end{gathered}$				STANDARD OUTPUT TRANSFORMERS
					Primary	Secondory					
11/2	$31 / 2$	2\%	21/2	$+$ dbm	$\begin{gathered} 20,000 \text { С.Т. } 12,500 \text { С.T. } \\ 5000 \\ 3125 \end{gathered}$	$\begin{aligned} & 500 \text { C.T. } \\ & 200 \text { C.T. } \\ & 333-250 \\ & 125-50 \end{aligned}$	15	$2 \begin{gathered} 20 \\ 20,000 \end{gathered}$	Single or push-pull plates to line. 30 db hum bucking.	S-448-Q	5
13/4	218	213	21/4	10	8000 C.T. 1	16-12-8-4	45	$\begin{array}{lc} 5 \quad 30 \\ & 15,000 \end{array}$	Push pull plates to speaker.	S-508-A	
2	2\%	23/4	21/2	10	$\begin{aligned} & 10,000 \text { С.т. } \\ & 8000 \text { С.т. } \end{aligned}$	$\underset{\star}{16-8}$	40	$4 \quad 20$	Push pull plates to speaker.	S-510-F	
21/2	31/8	3	2%	20	6600 C.T.	16-12-8-4	70	$\begin{array}{lc} \hline 30 \\ \hline 15,000 \end{array}$	Push-pull plates to speaker.	5-516-A	
3	4\%	$3 \frac{1}{18}$	23/4	20	$\begin{aligned} & 6600 \text { C.T. } \\ & 5000 \text { C.T. } \end{aligned}$	$\underset{\star}{16-8-4}$	60	$\begin{gathered} 20 \\ 30,000 \\ \hline \end{gathered}$	Push pull plates to speaker.	S-526-F	
3	31/2	31/4	2\%	20	$\begin{aligned} & 5000 \text { C.T. } \\ & 3000 \text { С.T. } \end{aligned}$	$\begin{aligned} & 500 \text { C.T. } 125 \\ & 16-12-8-4 \end{aligned}$	90	$9 \quad 30$	Push-pull plates to speaker or line.	S-530-A	
$21 / 2$	31/8	3	2 E	20	$\begin{aligned} & 5000 \text { С.T. } \\ & 3000 \text { С.T. } \end{aligned}$	16-12-8-4	90	$\begin{array}{ll} 930 \\ & 15,000 \end{array}$	Push-pull plates to speaker.	S-532-A	
51/2	415	318	$3{ }^{\frac{3}{6}}$	40	$5000 \text { С.т. } 4000 \text { С.Т. }$	$\stackrel{16-8-4}{\star}$	140	$14 \begin{array}{r} 20 \\ 30,000 \\ \hline \end{array}$	Push pull plates to speaker.	S-542-F ()	
9	43/4	4\%	37/8	60	$\begin{aligned} & 3800 \text { С.T. } \\ & 3200 \text { С.T. } \end{aligned}$	$\begin{gathered} 330,821 / 2 \\ 16-12-8-4-2 \end{gathered}$	250	$\begin{array}{cc} 25 & 30 \\ 15,000 \end{array}$	Push-pull plates to speaker or line.	S-552-A	

- Maximum operating level, 1 mw reference.
- Impedance is total of two separate windings.
* All low-impedance windings of high-level output and impedance matching transformers may be worked into loads within $\pm 20 \%$ of the rated impedance.
For RTMA standardized 70 volt line. See "Data", Page 13.
(1) New, Special Feature item.

20-20 PLUS

(Continued on Page 9)

PEERAOS Trariter

20-20 PLUS

Wr. Lb.	Dimensions, In.			PRI. D.C. MA Per Winding Max. Unbal.		$\underset{\text { Level }}{\text { Maximum }}$	Impedance, Ohms		Descriptive Data	$\begin{aligned} & \text { Type } \\ & \text { Number } \end{aligned}$	OUTPUT TRANSFORMERS	
	H	D	w			Pri.	Sec.					
31/4	41/2	318	$3 \frac{1}{16}$	70	7			$\begin{gathered} 6600 \\ \text { C.T. } \\ 1650 \\ \text { C.T. } \end{gathered}$	$\begin{aligned} & 16,12 \\ & 8,4,2 \end{aligned}$	Frequency response, ± 1 db: 10-100,000 cps. Power rating, at 15 cps ., 10 watts; at $10 \mathrm{cps}$. watts. Insertion loss 0.5 db. Can be used between half and double of rated impedances. For half impedances, power ratings are doubled. For doubled impedances, power ratings are halved. Secondary may be operated with one ond, or C.T. grounded.	S-226-Q	$\begin{aligned} & \text { high } \\ & \text { level } \end{aligned} \quad S$
61/2	4\%	3\%	31/2	120		$\begin{gathered} \text { dbm }_{\text {di6 }} \\ (40 \text { watts) } \\ \text { See } \\ \text { Data } \end{gathered}$	$\begin{gathered} 5000 \\ \text { C.I. } \end{gathered}$	$\begin{aligned} & 16,12 \\ & 8,4,2 \end{aligned}$	Same as S-226-Q, except: Power rating, at 15 cps., 20 watts; at 10 cps., 10 watts. In sertion loss, 0.4 db .	S-256-Q (i)		
14	5\%	41/2	4\%	$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 12 \\ & 25 \end{aligned}$	$\begin{gathered} +49 \\ \text { dbm } \\ (80 \text { watts) } \\ \text { Soe } \\ \text { Data } \end{gathered}$	$\begin{gathered} 8000 \\ \text { C.T. } \\ 2000 \\ \text { C.T. } \end{gathered}$	$\begin{gathered} 16,12 \\ 8,4,2 \end{gathered}$	Same as S-226-Q, excopt: Frequency rosponse $\pm 1 \mathrm{db}$: 8-80,000 cps. Power rating, at 15 cps., 40 watts; at 10 cps., 20 watts. Insertion loss, 0.3 db .	S-268-Q		

(1) Now, Special Feature, item.
-Maximum operating level, 1 mw reference.

- Secondary impedance is total of two separate windings.

FREQUENCY IM CYCLES PER SECOND

20-20 PEERLESS TRANSFORMERS

AUDIO
TRANSFORMERS

This curve represents the maximum expected power and frequency deviafion from the rated mid-range value for Peerless 20-20 transformers.

INPUT TRANSFORMERS K	TypeNumber	Doscriptive Dota	Impedanco, Ohms		$\underset{\text { Levai }}{\text { Max }}$	PRI. D.C. MA Per Winding		Dimensions, in.			$\underset{\text { che }}{\text { Lb }}$
			Pri.	Soc.		Max.	Unbol.	H	D	w	
K Aow level	K-221-Q	Secondary may be used single ended or in push-pullhas two secondary windings with balanced capacitance to ground. Electro-static shield is provided between primary and secondary. Has 90 db electro-magnetic shield.	$\begin{gathered} 500 \\ 250 \\ 30 \\ \text { or } \\ 600 \\ 300 \\ 36 \end{gathered}$	$\begin{gathered} 70,000 \\ \text { or } \\ 84,000 \end{gathered}$		0		$31 / 2$	2\%	21/2	1\%
line level	K-251-Q	Same as K-22I-Q except has 30 db electro-magnetic shield.	500,250 $125,621 / 2$ 600, 300	$\begin{gathered} 40,000 \\ \bullet 0 \\ \text { or } \\ 48,000 \\ 6 \end{gathered}$	$\underset{\mathrm{dbm}}{+23}$	0		41/8	3 fr	$3 \frac{1}{16}$	2\%/8
high level	K-281-Q	For push-pull arrangement only-has two secondary windings with balanced copacitance to ground.	$\begin{gathered} \hline 500,220 \\ 125,56,14 \\ \text { or } 14 \\ 600,265 \\ 150,67 \\ 17 \end{gathered}$	$\begin{gathered} 30,000 \\ \text { or } \\ \text { or } \\ 36,000 \end{gathered}$	$\underset{\mathrm{dbm}}{+38}$	0		4\%	3\%	31/2	51/2
INTERSTAGE TRANSFORMERS G Iow level	G-212-Q	Both primary and secondary may be used single-ended or in push-pull-has two secondary windings with balanced capacitance to ground-has primary and secondary-parallel feed is recommended. Has 90 db electro-magnetic shield.	$\begin{array}{r} 10,000 \\ 2,500 \end{array}$	$\begin{aligned} & 40,000 \\ & 10,000 \end{aligned}$	$\frac{-12}{\mathrm{dbm}}$	5	0.5	$31 / 2$	2\%	21/2	1\%
line level	G-252-Q	Same as G-212-Q except has 30 db electro-magnetic shield.	$\begin{array}{r} 10,000 \\ 2,500 \end{array}$	$\begin{aligned} & 40,000 \\ & 10,000 \end{aligned}$	${ }_{\mathrm{dbm}}^{23}$	10	1.0	4\%	$3{ }^{\text {\% }}$	318	2\%6

PEERLESS TRANSFORMERS

20-20

Wi.	Dimensions, In.			PRI. D.C. MA Per Winding		Maximum Leve!	Impedance, Ohms		Descripfive Data	$\begin{gathered} \boldsymbol{T}_{\boldsymbol{Y p e}} \\ \text { Number } \end{gathered}$	TRANS
	H	D	w	Max.	Unbal.		Pri.	Sec.			
23/4	41/8	$3{ }^{\text {\% }}$	$3 \frac{1}{16}$	12	12	+26 dbm	$\begin{aligned} & 8000 \\ & 2000 \\ & \text { or } \\ & 9600 \\ & 2400 \end{aligned}$	$\begin{gathered} 500,250 \\ 12,621 / 2 \\ \text { or } \\ 600,300 \\ 150,75 \end{gathered}$	Primary may be used single ended or in push-pull. Will carry tube plate current. Two secondary windings with balanced capacitance to ground. 40 db electro-magnetic shield.	S-225-Q	line level
6	4\%	35\%	$31 / 2$	50	5	$\begin{aligned} & +43 \mathrm{dbm} \\ & (20 \mathrm{watts}) \end{aligned}$	$\begin{gathered} 10,000 \\ \text { C.T } \end{gathered}$	$\begin{aligned} & 16,8 \\ & 4,2 \text { * } \end{aligned}$	Secondary may be operated with one end grounded.	S-227-Q	high level
6	45\%	3\%	$31 / 2$	70	7	$\stackrel{+43 \mathrm{dbm}}{(20 \mathrm{watss})}$	$\begin{aligned} & 6600 \\ & \text { C.T. } \end{aligned}$	$\begin{aligned} & 16,8, \\ & 4,2, \star \end{aligned}$	Same as S-227-Q.	S-230-Q	
6	4\%	3\%	$31 / 2$	70	7	$\begin{aligned} & +43 \mathrm{dbm} \\ & (20 \mathrm{watts}) \end{aligned}$	$\begin{aligned} & 6600 \\ & \text { C.T. } \end{aligned}$	$\begin{aligned} & 500,250 \\ & 125,621 / 2 \end{aligned}$	Secondary should be operated balanced to ground.	S-235-Q	
6	4\%	3\%	$31 / 2$	90	9	$\underset{(20 \mathrm{waths})}{+43 \mathrm{dbm}}$	$\begin{aligned} & 5000 \\ & \text { C.T. } \end{aligned}$	$\underset{2, \star}{16,8,4}$	Same as S-227-Q.	S-240-Q	
6	4\%	3\%	$31 / 2$	90	9	$\begin{gathered} +43 \mathrm{dbm} \\ (20 \mathrm{watts}) \end{gathered}$	$\begin{aligned} & 5000 \\ & \text { C.T. } \end{aligned}$	$\begin{aligned} & 500,250 \\ & 125,621 / 2 \end{aligned}$	Same as S-235-Q.	S-242-Q	
6	4\%	3\%	$31 / 2$	110	11	$\begin{aligned} & +43 \mathrm{dbm} \\ & (20 \mathrm{watts}) \end{aligned}$	$\begin{aligned} & 3000 \\ & \text { C.T. } \end{aligned}$	$\begin{gathered} 16,8 \\ 4,2 \star \end{gathered}$	Same as S-227-Q.	S-245-Q	
6	4\%	3\%	$31 / 2$	110	11	$\underset{(20 \mathrm{watts})}{+43 \mathrm{dbm}}$	$\begin{aligned} & 3000 \\ & \text { C.T. } \end{aligned}$	$\begin{aligned} & 500,250 \\ & 125,621 / 2 \end{aligned}$	Same as S-235-Q.	S-250-Q	
10	5	418	$4 \frac{1}{18}$	$\begin{aligned} & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & 11 \\ & 22 \end{aligned}$	$\begin{aligned} & +46 \mathrm{dbm} \\ & (40 \mathrm{watts}) \end{aligned}$	$\begin{gathered} 10,000 \\ \text { C.T. } \\ \text { 2500 } \\ \text { C.T. } \end{gathered}$	$\begin{aligned} & 16,8,8 \\ & 4,2 \star \end{aligned}$	Two center-tapped primaries may be used in series or paraliel. Secondary may be operated with one end grounded.	S-265-Q	
10	5	$4 \frac{5}{18}$	$4 \frac{1}{18}$	$\begin{aligned} & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & 11 \\ & 22 \end{aligned}$	$\begin{gathered} +46 \mathrm{dbm} \\ (40 \mathrm{wafts}) \end{gathered}$	$\begin{gathered} 10,000 \\ \text { C.T. } \\ \text { 2500 } \\ \text { C.T. } \end{gathered}$	$\begin{aligned} & 500,250 \\ & 125,621 / 2 \end{aligned}$	Same as S-265-Q except secondary should be operated balanced to ground.	S-270-Q	

[^0]
20-20
 PEERLESS TRANSFORMERS

- Maximum operating level, I mw reference.
* All low-impedance secondary windings of high-level output and impedance matching transformers may be worked into loads within $\pm \mathbf{2 0 \%}$ of the rated impedance.
- For RTMA standardized 70̣ volt line. See "Data", Page 13.

PEERLESS TRANSFORMERS

DATA

The RTMA has standardized the output circuits of power amplifiers for sound distribution systems on the basis of a 70 -volt loudspeaker line. This means that an amplifier should have an output impedance such that, under test conditions, it will supply 70 volts of single frequency power at its maximum rated output. The 70-volt system works as follows:
1.) A matching transformer is required for each loudspeaker. The secondary of the transformer is tapped to match the loudspeaker impedance (such as $4,8,12$, and 16 ohms). 2.) The primary of the transformer is tapped over a suitable range of impedances which are bracketed somewhat by the power rating of the unit. Depending upon the power required by the loudspeaker, the proper primary impedance tap is chosen so that the loudspeaker will draw the required watts when 70 volts is applied to it. In practice, the connection for a number of loudspeakers then becomes simple. First, the power needed for each loudspeaker location is

CATALOGUE CASE STYLES

CASE STYLE "E"

CASE STYLE "Q"
 will not rise more than 3 db . Therefore, amplifiers used for this service should have an internal impedance sufficiently low to meet this requirement. Output (S) and Matching (E) Transformers suitable for 70 -volt line operation, are identified by (\square) in the page margin and correlated footnote. They will be found on Pages 6, 7, 11 and 12.

RTMA 70v. LINE
determined. Second, a matching transformer of adequate power rating is chosen. Third, the primary impedance is selected which will give the desired power when connected across a 70 -volt circuit.
3.) The power requirements for all loudspeakers are added up and an amplifier chosen which is capable of supplying at least this power. All loudspeaker transformer inputs may then be connected in parallel to the 70 volt output of the amplifier.
4.) The use of this system implies that the output operates at substantially a constant potential. That is, if all the loads are disconnected, the output voltage

CATALOGUE CASE STYLES

CASE STYLE "K"

CUSTOM TYPES
 (P)
 PEERLESS TRANSFORMERS

In the custom transformer field, Peerless has established an enviable reputation as a result of continuing to design transformers to meet the most unusual and stringent specifications submitted by civilian manufacturers and government contractors, and then manufacturing these transformers with tight quality control. Peerless engineers are experienced through years of transformer application involving thousands of designs. Peerless manufacturing facilities are equipped to handle the most difficult problems of transformer manufacture-from single units to quantities in thousands.
Built to meet all JAN-T-27 and MIL-T-27 specifications, many of these transformers are being used in radar, sonar, guided missiles, radio communications and many other applications. They are available in such types as high voltage and filament supply, charging chokes, saturable reactors, pulse transformers, etc.-in power range from microvolts to 30,000 volts and from 1 milliwatt to 25 KVA ; and in several types of construction such as hermetically sealed
oil filled heliarc cases-hermetically sealed potted casessolder sealed metal cases-and Fosterite treated transformers with thermosetting resin.

In addition to the transformers described above which meet Class A and Class B requirements, Peerless manufactures units in accordance with the requirements of Class H. Class H transformers will operate in ambient temperatures up to +200 degrees centigrade and will function satisfactorily in temperatures as low as -70 degrees centigrade.
All insulating materials are inorganic, and include glass, asbestos, ceramics, Silicone varnishes and Silicone oils. Class H transformers are used where extreme miniaturization is the paramount requirement.
If you have need for custom transformers for either civilian or government requirements you will find it profitable to contact Peerless with complete assurance that they can design to any given specification and manufacture in whatever quantities are desired.

(
 SPECIAL TYPES

T-805-H

R-895-H

All transformers on this page in " H " style cases, as illustrated, are made in accordance with the requirements of specification MIL-T-27, Grade 1, Class A. Cases are finished in black. A fungicidal coating can be furnished at an additional charge.

wt. Lb.	Dimensions, In.			Secondary		Primary			va	$\begin{gathered} \text { Type } \\ \text { Number } \end{gathered}$
	H/T	D	w	Volts	Amp.	Volts	Freq. cps	Phase		
. 37	$13 / 4$	11/4	11/4	6.3 C.T.	0.8, A.C.	115	$\begin{aligned} & 380- \\ & 1000 \end{aligned}$	1	5	F-406-H
. 75	$21 / 2$	$1{ }^{\frac{7}{18}}$	15/8	6.3/6.0 C.T. Curren at either both in co	$\begin{aligned} & \text { 6.6, A.C. } \\ & \text { is total } \\ & \text { oltage or } \\ & \text { nbination. } \end{aligned}$	115	$\begin{aligned} & 380- \\ & 1000 \end{aligned}$	1	42	F-410-H
1.7	23/4	2	21/8	$\begin{gathered} 300-0-300 \\ 6.3 \\ 6.3 \end{gathered}$	$\begin{aligned} & .05, \text { D.C. } \\ & 2.25, \text { A.C. } \\ & 2.25, \text { A.C. } \end{aligned}$	115	$\begin{aligned} & 380- \\ & 1000 \end{aligned}$	1		R-895-H
. 88	23/4	$1{ }_{1}^{78}$	15/8	26	1.9, A.C.	115	$\begin{aligned} & 380- \\ & 1000 \end{aligned}$	1	50	T-805-H
1.95	21/2	$\begin{gathered} 4 \\ \text { (5 over } \\ \text { flanges) } \end{gathered}$	$11 / 2$	26	$\begin{gathered} \text { 0.65, A.C. } \\ \text { per } \phi \\ \text { wye } \end{gathered}$	115	$\begin{aligned} & 380- \\ & 1000 \end{aligned}$	$\begin{gathered} 3 \\ \text { delta } \end{gathered}$	50	T-806-H
2.4		4 (5 over flanges)	$11 / 2$	26	$\begin{gathered} \text { 1.3, A.C. } \\ \text { per } \phi \\ \text { wye } \end{gathered}$	115	$\begin{aligned} & 380- \\ & 1000 \end{aligned}$	$\stackrel{3}{\text { delta }}$	100	T-810-H

ff Height of case only. Does not include terminals or studs.

9356 SANTA MONICA BIVD., BEVERLY HILLS, CALIFORNIA • 161 SIXTH AVE., NEW YORK 13, N.Y.

DISTRIBUTED BY:

[^0]: - Maximum operating level, 1 mw reference.
 - Secondary impedance is total of two separate windings.
 * All low-impedance secondary windings of high-level output and impedance matching transformers may be worked into loads within $\pm \mathbf{2 0 \%}$ of the rated impedance.
 For RTMA standardized 70 volt line. See "Data", Page 13.

