INDUGTORS • ELEGTRIC WAVE FILTERS HI-Q INDUGTORS • TRANSFORMERS

United Transformer Company a subsidiary of OPT Industries Inc.

To Our Customers:

OPT has been a recognized leader in design, development and manufacture of magnetic components for many years. Recently, our industry position was strengthened by the acquisition of the United Transformer Division of TRW, another industry leader with complementary product lines and capabilities.

The union of the OPT and UTC capabilities in magnetic component development and manufacture formed the basis for our new Magnetics Division, one of the industry's major viable sources of supply of transformers, inductors, coils, filters and vertically integrated assemblies.

Our purpose is to serve our customers with innovative and cost effective solutions to their applications problems and answer their needs for quality magnetic components. This catalog offers standard products, with proven reliability, readily available for your immediate use. If your needs are not served by the standard product offering in this catalog, we will be pleased to custom design products as solutions to your problems.

Our employees are dedicated to providing optimum customer service and to producing products with optimum quality. We hope that you consider all of us at OPT as members of your team.

We appreciate your business and look forward to serving you in the future with OPT products . . . the optimum choice.

PRODUCT SERIES INDEX

AUDIO TRANSFORMERS AND INDUCTORS

General Information 3,4
Product Selection Guide 5
Military Types: Grade 5, Metal Encased
BIT-250 Surface mount, IC flat pack style 8
DI-T Ultraminiature transformers 9,11
DI-T200 Plug-in ultraminiature transformers 9,12
DO-T Ultraminiature transformers 9,10
DO-T200 Plug-in ultraminiature transformers 9,12
TOP Plug-in miniature transformers 14,15
TSM Surface mount transformers 6,7
Military Types: Grade 5, Molded
CMA,B,C $\quad 1$ to 1 hi frequency isolation transformers(see alternate application chart).38
MTC Plug-in transformers for telephone interconnect and hybrid action 16
RSI Plug-in ultraminiature inductors 13
RST Plug-in ultraminiature transformers 13
SO-P Molded plug-in transformers and inductors. 17,20,21
SSO-P Molded plug-in transformers and inductors. 17,22,23,24
Industrial Types: Non-Hermetic
0 Compact audio transformers and inductors 17,18,19
PC-O Plug-in transformers and inductors 17,18,19
PC-SO Plug-in transformers and inductors 17,20,21
PC-SSO Plug-in transformers and inductors 17,22,23,24
POWER TRANSFORMERS AND INDUCTORS
General Information 25,26
Product Selection Guide 27
All Power Components are Military TypesLinear
DO-T400 Ultraminiature power transformers 42
FP 400 Hz , low profile power transformers 39
H Molded 400 Hz transformers 42
H Metal clad, supply transformers 40,41
MET Metal clad, supply transformers 40,41
MET Metal clad, 400 Hz transformers 42
Switch Mode
GDT Gate drive transformers 29
CMA,B,C Common mode inductors 38
CSL Current sense inductors 30
LL Axially leaded, mini inductor 31
PS Plug-in inverter transformers 28
RML Radially leaded, hi frequency inductors 32,33
SRA Radially leaded, 1 to 15A microhy inductors 34
SRB Radially leaded, 1 to 15A micro to millihy inductors 34
SRC Radially leaded, 1 to 15A micro to hy inductors 35
SRD Hi current, hi inductance inductors 35

PRODUCT SERIES INDEX

PULSE TRANSFORMERS

General Information 43
Product Selection Guide 43
PIP Metal encased transistor types 44
MPX MIL STD 1553B, multiplex data bus 44
H Molded, precision miniature wide application 45
PCH Plug-in precision miniature wide application 45
HIGH Q INDUCTORS
General Information 46
Product Selection Guide 46
All Hi Q Inductors are Military Types High Q Inductors-Fixed
MH Toroidal, molded 49
ML Laminated, shielded 47
MM Toroidal, molded 48
MO Laminated, molded 47
MS Toroidal, molded 48
MW Toroidal, molded 49
ELECTRIC WAVE FILTERS
General Information 50,51
Product Selection Guide 52
Band Pass
BPM Ultraminiaturized metal cased, pin terminals, center frequency range 400 Hz to 20 KHz 54
MNF Ultraminiature, telemetering, metal cased, epoxy terminal board. Band width $\pm 7.5 \%$. 53
MWF Similar to MNF except band width $\pm 15 \%$ 53
MF Monolithic crystal filters 10.7 and 21.4 MHz 55,56,57
Band RejectBPM Ultraminiaturized metal cased, pin terminals. Center frequency range400 KHz to 20 KHz .54
Low Pass
LPM Ultraminiaturized metal cased, pin terminals. Cutoff frequency range 200 Hz to 15 KHz 54
High Pass
HPM Ultraminiaturized metal cased, pin terminals. Cutoff frequency range 500 Hz to 4 KHz 54
DC/DC ConvertersMiniaturized, Surface Mount
Isolation converters 37
Telcom multiple output converters 37
Non-isolation polarity reversing converters 36
Non-isolation voltage boosting converters 36

GENERALINFORMATION Audio Transformers and Inductors

The audio transformer is defined by operation over a frequency band. Originally the audio band referred to the audible spectrum of frequencies, 15 Hz to 20 KHz . As it was found that the audio type transformer could be used successfully beyond this frequency range and for other functions, the applications broadened but the name "audio" remained.

Some of the applications of audio transformers are impedance matching, coupling, isolation and voltage gain. In selecting audio transformers the following are key parameters: source and load, impedance voltage level (power rating), frequency response and DC current capability; if any.

UTC has broad experience in custom designing transformers for special applications. Facilities are available for full engineering discussion to work out magnetics in early stages of equipment design. Fully equipped electronics, mechanical, and chemical laboratories with modern, accurate equipment are available to aid in the design of custom transformers.

CATALOG SPECIFICATIONS

The primary and secondary impedances listed in this catalog are the rated source and load resistances between which the transformer's performance ratings are determined. For instance, a unit rated at 500 ohms primary impedance and 500 ohms secondary impedance would yield the rated response limits when the part is driven by a 500 ohm source and is loaded with a 500 ohm load. Reductions in source and/or load impedances below the rated values would "push" the response characteristics toward lower frequencies. Conversely, higher than rated sources or loads edge the part ratings toward higher frequencies at the sacrifice of the lower portion of the rated frequency band.

A listing of "CT" after the impedance means that the winding has a termination midway toward the total winding turns (center tap).
"Split" listing after the impedance rating means that the total impedance rating shown is composed of two separated windings, which when placed in series produce the larger of the two rated listings. When the windings are placed in parallel, the smaller of the winding ratings is achieved ($1 / 4$ of the larger).

The maDC rating shows the maximum unbalanced DC current which can be taken in the winding without disturbing the rated response limits. The maDC rating is not a measure of the maximum DC current which the part can tolerate. The maximum currents are a function of the wire sizes used in the part and the allowable heat rise for the part. The maximum AC power to be handled also affects the analysis. Because of the complicated
interrelationships, maximum DC ratings are generally not listed as catalog values.

Milliwatt or maximum level is the power handling capability of the transformer in terms of power delivered to a matched load with a matched source impedance. This power level is typically measured at 1 KHz with 5% maximum waveform distortion. In some of the product lines, this power is measured at the lowest frequency within the band pass. The DO-T and DI-T line are all measured at 1 KHz . All other audio transformer products, because of specific applications, vary in terms of the frequency at which the maximum power level of operation is specified.

CUSTOM SPECIFICATIONS

ELECTROSTATIC AND ELECTROMAGNETIC SHIELDING

Audio transformers require more shielding, in most cases, than any other type transformer. Because of the low power levels they operate at, they may be susceptible to radiated and line coupled interference.

Electrostatic shielding is commonly used between the primary and secondary of a transformer to reduce line coupled interference by reducing the interwinding capacity. This is accomplished by use of highly conductive materials, such as copper, silver or aluminum, as a wrap around or between the coils of a transformer.

Magnetic shielding is used to reduce radiated type interference from affecting a transformer. It is accomplished by encasing the transformer in a single high permeability nickel-iron case, or several nickel-iron cases, depending upon the intensity of the radiation.

DISTORTION

This is a measure of conformance between the transformer input and output signal waveshapes. Alternately it is a measure of the degradation of signal purity as it passes through a device.

TRANSFORMER PHASE SHIFT

A transformer is a series parallel network of complex impedances and will exhibit phase shift from primary to secondary as a function of frequency. Because its inductance is non-linear with applied voltage, phase shift will also be dependent on input voltage level.

By no means have we dealt with all of the terminology of audio transformers with regard to specifications. We have merely touched upon the surface as indicative of the variety of customer requirements that UTC frequently experiences. Specific requirements for tight performance characteristics are best discussed with our engineering department to arrive at practical solutions based on the state of the art.

GENERAL INFORMATION Audio Transformers and Inductors

REFLECTED IMPEDANCE AND RETURN LOSS.

A transformer can be designed to reflect a specific impedance (within a reasonable tolerance) under a particular set of operating conditions. A measure of the accuracy of the impedance reflection is referred to as a return loss.

RETURN LOSS MEASURES THE ENERGY REFLECTION between two Impedance's due to mismatching their values

$Z_{\mathrm{f}}=$ INPUT IMPEDANCE OF TRANSFORMER AT FREQ and Level of interest
$\mathrm{Zs}=$ SOURCE IMPEDANCE TO BE MATCHED
RETURN LOSS $=20 L O G\left|\frac{Z_{s}+Z_{\mathrm{f}}}{\mathrm{Zs}_{\mathrm{s}}-\mathrm{Z}_{\mathrm{f}}}\right| \mathrm{DB}$

INSERTION LOSS AND EFFICIENCY.

Insertion loss is the ratio of useful power delivered, to the input power supplied, the latter being a somewhat larger quantity to overcome losses inherent in the power transferring device. It is expressed in db .

Efficiency expresses the discrepancy between power supplied and power delivered. It is expressed as a percentage.

INSERTION LOSS MEASURES THE EFFICIENCY OF POWER TRANSFER THROUGH THE TRANSFORMER

INSERTION LOSS $=20 L O G\left|\frac{E_{s}}{E_{L}}\right|+10 L O G\left|\frac{R_{L}}{4 R s}\right| D B$

FREQUENCY RESPONSE.

The reference frequency is a frequency in the flat portion of the frequency response and is typically 1 KHz . It is usually the frequency at which the insertion loss is measured. (Refer to Insertion Loss circuit above).

FREQUENCY RESPONSE $\quad \mathrm{db}=20 L O G \frac{E F}{E R}$
Where
$E R=$ output voltage at reference frequency
EF = output voltage at any other frequency

BALANCE WINDING, CENTER TAP, LONGITUDINAL, AND HYBRID.

Many audio transformer applications require two matched windings or winding halves. Depending upon the parameters to be compared and the operating conditions, the type of balance required takes on a variety of names, as mentioned above.

Low frequency winding balance requirements are generally turned to accurate turns ratios and extremely well matched DCR's, while high frequency balance includes balancing of winding capacitances.

LONGITUDINAL BALANCE MEASURES SUPPRESSION OF LONGITUDINAL SIGNALS BY THE TRANSFORMER

LONGITUDINAL BALANCE $=20 L O G\left|\frac{E 2}{E 1}\right| D B$

ELECTROSTATIC SHIELDING CIRCUIT.

Electrostatic Shielding ratio is the ratio of the voltage with switch open to the voltage with switch closed.

Electrostatic shielding ratio $=\frac{\mathrm{VO}}{\mathrm{VC}}$
VO = voltage with switch open
$\mathrm{VC}=$ voltage with switch closed

All windings are short circuited and those on the same side of the shield are connected together.

SELECTION GUIDE Audio Transformers and Inductors

Product Series	Description	Weight	Size (inches) (Nominal)	Freq. Range	Max. Power	Page
MILITARY TYPES: GRADE 5, METAL ENCASED						
BIT-250	Ribbon style Kovar leads; compatible with transistor and IC flat pack styles. Transformers and inductors.	. 0402	. 26 dx .26 h	$\begin{aligned} & 300 \mathrm{~Hz} \text { to } \\ & 250 \mathrm{kHz} \end{aligned}$	80 mW (a) 1 kHz	8
DO-T	Flexible $11 / 2^{\prime \prime}$ Dumet leads. Ultraminiature transformers and inductors for transistor circuitry.	. 102	. 34 dx .46 h	$\begin{aligned} & 300 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	500 mW @ 1 kHz	9/10
DO-T200	Plug-in - TO-5 pattern. Ulitraminiature transformers and inductors for transistor style circuitry.	. 12502	. 350 dx .56 h	$\begin{aligned} & 300 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	100 mW @ 1 kHz	9/12
DI-T	Flexible $11 / 2^{\prime \prime}$ Dumet leads. Goldplated. Ultraminiature transformers and inductors for transistor circuitry.	. 06702	. 34 dx .31 h	$\begin{aligned} & 400 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \end{aligned}$	500 mW @ 1 kHz	9/11
D1-T200	Plug-in - TO-5 pattern. Ultraminiature transformers and inductors for transistor circuitry.	. 06702	. 35 dx .36 h	$\begin{aligned} & 400 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \end{aligned}$	500 mW @ 1 kHz	9/12
TOP 1000	Plug-in, low profile, Class 5 miniature transformers	4.5 gr	. 50 dx .35 h	300 Hz to 75 kHz	.6 W (a) 1 kHz	14
TOP 2000	Plug-in, low profile, Class 5 miniature transformers	7 gr	. 50 dx .50 h	$\begin{aligned} & 150 \mathrm{~Hz} \text { to } \\ & 75 \mathrm{kHz} \end{aligned}$	1 W (a) 1 kHz	14
TOP 3000	Plug-in, low profile, Class 5 miniature transformers	16 gr	. 75 dx .52 h	$\begin{aligned} & 50 \mathrm{~Hz} \text { to } \\ & 30 \mathrm{kHz} \end{aligned}$	2W @ 1 kHz	15
TOP 4000	Plug-in, Class 5 miniature transformers	28 gr	. 75 dx .82 h	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } \\ & 25 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~W} \\ & \text { @ } 1 \text { kHz } \end{aligned}$	15
MILITARY TYPES: GRADE 5, MOLDED						
SSO-P	Transistor and tube type transformers. Input interstage output and inductors.	. 04 lbs	. $75 \times .88 \times .56 \mathrm{~h}$	$\begin{aligned} & 300 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	100 mW @ 300 kHz	$\begin{aligned} & \hline 17 / 22, \\ & 23,24 \end{aligned}$
SO-P	Transistor and tube type transformers. Input interstage output and inductors.	. 05 lbs	. $75 \times 1.0 \times .72 \mathrm{~h}$	$\begin{aligned} & 200 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	250 mW @ 200 Hz	17/20/21
TSM 1000	Surface mount ultraminiature transformers	. 05502	. $31 \times .31 \times .31 \mathrm{~h}$	$\begin{aligned} & 400 \mathrm{~Hz} \text { to } \\ & 250 \mathrm{kHz} \end{aligned}$	125 mW @ 1 kHz	6
TSM 2000	Surface mount ultraminiature transformers and inductors	. 1102	. $385 \times .385 \times .385 \mathrm{~h}$	$\begin{aligned} & 400 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \end{aligned}$	400 mW (1) 1 kHz	7
RST \& RSI	Plug-in ultraminiature transformers and inductors	. 102	. $31 \times .41 \times .465 \mathrm{~h}$	$\begin{aligned} & 300 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \end{aligned}$	50 mW @ 300 Hz	13
MTC	Telephone and modem interconnect transformers	$\begin{aligned} & \hline 0.8 \text { to } \\ & 110 z \end{aligned}$	$\begin{aligned} & .875 \times 1.093 \times .179 \mathrm{~h} \\ & \text { to } 1.625 \times 2.812 \mathrm{x} \\ & 1.156 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~Hz} \text { to } \\ & 4 \mathrm{kHz} \end{aligned}$	10 mW	16
INDUSTRIAL TYPES: CASED, NON-HERMETIC						
0	Excellent quality compact audio transformers and inductors, full range of transistor and tube applications.	102	. 88 dx 1.19 h	$\begin{aligned} & 300 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	1 Watt	17/18/19
INDUSTRIAL TYPES: OPEN FRAME, NON-HERMETIC						
PC-0	Plug-in types for mtg. on P.C. boards. Same electrical characteristics as std. ouncer, sub-ouncer and sub-sub-ouncer lines.	$\begin{aligned} & .07 \mathrm{lbs} \\ & \text { PC-0: } \end{aligned}$	$1.0 \times .90 \times .75 \mathrm{~h}$	$\begin{aligned} & 100 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	1W	17/18/19
PC-SO		$\begin{aligned} & .04 \mathrm{lbs} \\ & \text { PC-SO: } \end{aligned}$. $88 \times .88 \times .63 \mathrm{~h}$	$\begin{aligned} & 200 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	250 mW	17/20/21
PC-SSO		$\begin{aligned} & .024 \mathrm{lbs} \\ & \mathrm{PC}-\mathrm{SSO} \end{aligned}$	$.75 \times .75 \times .50 \mathrm{~h}$	$300 \mathrm{~Hz} \text { to }$ $20 \mathrm{kHz}$	100 mW	$\begin{aligned} & 17 / 22, \\ & 23,24 \\ & \hline \end{aligned}$
COMMON MODE INDUCTORS						
CMA	1 to 1 hi frequency matching and/or isolation transformers	. 033 lbs	. 81 dx .50 h	$1.5 \mathrm{kHz} \text { to }$ 5 mHz	$\begin{aligned} & 35 \mathrm{~mW} \text { to } \\ & 230 \mathrm{~mW} \end{aligned}$	38
CMB		. 052 lbs	. 96 dx .63 h	1.5 kHz to 5 mHz	$\begin{aligned} & 35 \mathrm{~mW} \text { to } \\ & 230 \mathrm{~mW} \end{aligned}$	38
CMC		. 09 lbs	1.14 dx .73 h	1.5 kHz to 5 mHz	$\begin{aligned} & 35 \mathrm{~mW} \text { to } \\ & 230 \mathrm{~mW} \end{aligned}$	38

Note: Description, freq. range, max. power info. is common to all types (CMA, B \& C).

NOTES

All are designed and constructed to meet the requirements of MIL-T-27 Grade 5, Class S.
Transformers are MIL-T-27
Type TF5S21ZZ
Inductors are MIL-T-27 Type TF5S20ZZ

TSM 1000

SIZE
$.31 \times .31 \times .31$
WEIGHT
.055 oz .
Terminals are copper clad steel, tinned.
FREQUENCY RESPONSE
$\pm 3 \mathrm{db}$ at $1 \mathrm{~mW}, 400 \mathrm{~Hz}-250 \mathrm{KHz}$

TSM 2000

SIZE
$.385 \times .385 \times .385$
WEIGHT
.11 oz .
Terminals are copper clad steel, tinned.
FREQUENCY RESPONSE $\pm 3 \mathrm{db}$ at $1 \mathrm{~mW}, 400 \mathrm{~Hz}-100 \mathrm{KHz}$
The power rating of the larger TSM-2000 Series is approximately 3 times that of the smaller TSM 1000 Series.

Part No.	$\begin{gathered} \text { Pri. } \\ \text { Pmp } \\ \text { ohms } \\ \hline \end{gathered}$	$\begin{gathered} \text { MaDC } \\ \text { in } \\ \text { Pri. } \end{gathered}$	Sec. Imp ohms	Power Milliwatts 1 KHz and higher higher	400 Hz	$\begin{gathered} \text { DCR } \\ \text { Pri./Sec. } \\ \pm 25 \% \\ \text { ohms } \end{gathered}$	$\begin{gathered} \text { Turns } \\ \text { Ratio } \\ \text { Pri./Sec. } \end{gathered}$
TSM-1045	100 CT	3.6	100 split	125	20	12.1/12	1/1
TSM-1080	150 CT	3	150 split	125	20	15/18.3	1/1
TSM-1090	200 CT	2.5	200 split	125	20	$22 / 26.8$	1/1
TSM-1110	300 CT	2	300 split	125	20	$33 / 40.3$	1/1
TSM-1115	300 CT	2	600 split	125	20	$33 / 72$	1/1.41
TSM-1170	500 CT	1.6	50 split	125	20	$54 / 6.6$	3.16/1
TSM-1180	500 CT	1.6	500 split	125	20	$54 / 65$	1/1
TSM-1215	600 CT	1.5	600 split	125	20	$59 / 72$	1/1
TSM-1270	1000 CT	1.2	1000 split	125	20	$120 / 120$	1/1
TSM-1305	1500 CT	1	500 split	125	20	$180 / 65$	1.73/1

Part No.	$\begin{aligned} & \text { Pri. } \\ & \text { Imp } \\ & \text { Imms } \end{aligned}$	$\begin{aligned} & \mathrm{Ma} \\ & \text { DC 1A } \\ & \text { Pri. } \end{aligned}$	$\begin{gathered} \text { Sec. } \\ \text { Imp } \\ \text { ohms } \\ \hline \end{gathered}$	Power Milliwatts 1 KHz and higher	400 Hz	$\begin{gathered} \text { DCR } \\ \text { Pri./Sec. } \\ \pm 25 \% \\ \text { ohms } \end{gathered}$	$\begin{aligned} & \text { Turns } \\ & \text { Ratio } \\ & \text { Pri./Sec. } \end{aligned}$
TSM-2035	80 CT	11.1	32 split	400	75	$8 / 4$	1.58/1
TSM-2080	150 CT	8.2	150 split	400	75	15/16.8	1/1
TSM-2115	300 CT	5.8	600 split	400	75	30/72	1/1.41
TSM-2125	400 CT	5	40 split	400	75	40/4.5	3.16/1
TSM-2140	400 CT	5	400 split	400	75	40/48	1/1
TSM-2170	500 CT	4.5	50 split	400	75	50/6	3.16/1
TSM-2190	500 CT	4.5	600 split	400	75	50/72	1/1.1
TSM-2215	600 CT	4.1	600 split	400	75	60/72	1/1
TSM-2265	1000 CT	3.2	50 split	400	75	100/6	4.47/1
TSM-2305	1500 CT	2.6	500 split	400	75	150/60	1.73/1
TSM-2340	2000 CT	2.2	8000 split	400	75	200/960	1/2
TSM-2460	1000 CT	1.0	500 split	250	75	1000/60	4.47/1
TSM-2475	10000 CT	1.0	1200 split	250	75	1000/144	2.89/1
TSM-2485	10000 CT	1.0	2000 split	250	75	1000/240	4.47/1
TSM-2500	10000 CT	1.0	10000 split	250	75	1000/1200	1/1
TSM-2555	20000 CT	0.7	800 split	125	75	2000/96	5/1

INDUCTORS

| Part
 No. | Series
 Inductance henries | DC
 ma | DCR $\pm \mathbf{2 5 \%}$ | Parallel
 Inductance henries | DC
 ma | DCR $\pm \mathbf{2 5 \%}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TSM-2705 | 0.1 | 4 | | 0.025 | 8 | |
| | .08 | 10 | 25 | 0.020 | 20 | 6.3 |
| TSM-2710 | 0.9 | 2 | | 0.23 | 4 | |
| | 0.5 | 6 | 105 | 0.13 | 12 | 26 |
| TSM-2715 | 2.5 | 2 | | 0.6 | 4 | |
| | 0.9 | 4 | 630 | 0.23 | 8 | 158 |
| TSM-2720 | 4.5 | 2 | | 1.1 | 4 | |
| | 1.2 | 4 | 2300 | 0.3 | 8 | 575 |

311-250 Surface Mount Transformer

PACKAGING

Size reduction without loss of performance is achieved by major reduction of air gaps in the magnetic circuit. Core permeability closely approaches the theoretical maximum for material and structure.

Materials, dimensions, and surface finish are identical with IC Flat Pack standards. Removable support protects terminal alignment prior to final assembly. This insulated support allows testing in conventional jigs.

RELIABILITY

Cylindrical bobbin-winding techniques eliminate corner stress normally found in fine-wire windings of conventional rectangular structures.

Lead arrangements and terminations have been designed to maximum reliability under thermal shock and temperature cycling.

FLEXIBILITY

The stock units shown on facing page are designed to afford maximum flexibility of application.

Transformers are 7-terminal types, with center-tapped primaries and split secondaries. When connected in parallel, split-winding secondaries provide $1 / 4$ the impedance and twice the DC current capability as series connections.

Inductors in the stock line include both single-winding and split-winding types.

SPECIALS

BIT-250's not found in the stock line will be designed to customer's requirements.

- Special electrical parameters
- 10 or more leads
- Operation to $130^{\circ} \mathrm{C}$ per MIL Class S.

NOTES

FREQUENCY RESPONSE: $\pm 2 \mathrm{db}, 300 \mathrm{~Hz}-250,000 \mathrm{~Hz}$, @1 MW Ref. level.
DIELECTRIC STRENGTH: tested @ 200 V RMS.
MIL SPECS:
To complete MIL-T-27 Specs. Metal encased, ruggedized, Grade 5, Class R.

SHIELDING:

All units electromagnetically self-shielded.
LEAD MATERIAL:
Tinned ribbon-style, solderable and weldable -MIL-STD-1276.

NON-CONDUCTIVE TEST \& SHIPPING SUPPORT TO BE CUT FROM UNIT BEFORE ASSEMBLY (DO NOT TEAR BY HAND)

TRANSFORMERS

BIT-250 Type No.	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \mathrm{Pri} \\ \operatorname{Imp} \Omega \end{gathered}$(CT)	Sec Imp Ω (Split Wdg) Series/Par	Power Level mW for 5\% Max Dist @ 1 KHz	$\begin{gathered} \text { Pri } \\ \text { DCR } \\ \Omega \\ \hline \end{gathered}$	(Series Conn.) Sec DCR Ω	Turns Ratio		Typical Application
							Pril Secl Sec	Pri.I Overall Sec	
BIT-250-14	M27/173-03	150	12/3	80	16	1.85	7.1:1:1	3.54:1	Output
BIT-250-18	M27/173-04	300	600/150	80	30	65	1.4:1:1	1:1.4	Output or Matching
BIT-250-20	M27/173-05	400	400/100	80	45	45	2:1:1	1:1	Matching or Interstage
BIT-250-26	M27/173-06	500	50/12.5	80	58	5.5	6.32:1:1	16:1:1	Output
BIT-250-30	M27/173-07	600	600/150	80	65	65	2:1:1	1:1	Isolation or Matching
BIT-250-36	M27/173-08	1000	1000/250	80			2:1:1	1:1	Output or Matching
BIT-250-40	M27/173-02	1500	600/150	75	150	65	3.16:1:1	1.58:1	Output
BIT-250-48	M27/173-09	2000	8000/2000	75		745	1:1:1	1:2	Isolation or Interstage
BIT-250-56	M27/173-10	10K	500/125	75	900	45	8.92:1:1	4.46:1	Output or Driver
BIT-250-60	M27/173-11	10K	1200/300	75		100	5.78:1:1	2.89:1	Driver
BIT-250-64	M27/173-12	10K	2000/500	75			4.48:1:1	2.24:1	Interstage
BIT-250-70	M27/173-13	10K	$10 \mathrm{~K} / 2500$	75		750	2:1:1	1:1	Isolation or Interstage
BIT-250-90	M27/173-01	25K	1000/250	40	2400	78	10:1:1	5:1	Interstage

INDUCTORS

BIT-250 Type No.	MIL-Type	Connections	Inductance Hys Min @ 1 KHz 5 V	(a) ma DC	DC Res Ω	Ratio of Wdgs.
BIT-250-03 (2 Wdgs)	TF5R20ZZ	Series	$\begin{aligned} & 8.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & \hline \end{aligned}$	2260	1:1
		Parallel	$\begin{gathered} 2.4 \\ .63 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 4 \\ & \hline \end{aligned}$	565	
$\begin{gathered} \text { BIT-250-05 } \\ (1 \mathrm{Wdg}) \\ \hline \end{gathered}$	TF5R20ZZ		$\begin{aligned} & 5.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & \hline \end{aligned}$	1000	
$\begin{gathered} \text { BIT-250-06 } \\ (1 \mathrm{Wdg}) \end{gathered}$	TF5R20ZZ		$\begin{aligned} & .80 \\ & .25 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \\ & \hline \end{aligned}$	250	
BIT-250-09 (2 Wdgs)	TF5R20ZZ	Series	$\begin{aligned} & .60 \\ & .15 \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \end{aligned}$	146	1:1
		Parallel	$\begin{aligned} & .15 \\ & .038 \end{aligned}$	$\begin{array}{r} 0 \\ 10 \end{array}$	37	

DO-T and DI-T Miniature Transformers and Inductors

PACKAGING

Hermetically sealed. The bobbin is completely rigid eliminating stress and wire movement. The turns are circular in shape rather than square, eliminating turn corner stress and effecting uniform wire lay. No tapes are employed in connecting coil wire and external leads. They are rigidly anchored in secure terminal board fashion providing strain relief.

The leads used on the stock DO-T transformers are insulated solid .016 diameter Dumet leads. For plug-in type see page 12.

MIL SPECS

To complete MIL-T-27 Specs. Units are fully ruggedized, hermetically sealed, metal cased to MIL Grade 5, Class R.

ALTITUDE

150,000 ft. max.

PERFORMANCE

This radically designed transistor transformer family provides unprecedented power handling capacity and reliability, coupled with small size. Electrical parameters and areas of application exceed conventional transformer capabilities.

Curves on this page and on pages 11 and 12 indicate their performance compared to that of similar size units now on the market. These curves show representative performance of all DO-T's and DI-T's except 200,000 ohm units. Higher performance is obtained when used in push-pull with balanced DC. Other manufacturers' comparative performance is shown on these curves to put unjustified claims in perspective. For example, the UTC DO-T10 delivers 100 mW @ 5\% distortion @ 300 Hz . Identical measurements were made on contemporary manufacturers' equivalent, rated at 50 mW @ 300 Hz . Actual delivered power was under $1 \mathrm{~mW} @ 71 / 2 \%$ distortion @ 300 Hz .

FREQUENCY RESPONSE

$\pm 3 \mathrm{db}, 300 \mathrm{~Hz}$ to 20 KHz at 1 mw .

WORKING VOLTAGE

50 volts peak.

APPLICATION

Units can be used for different impedances from those shown, keeping in mind that impedance ratio is constant. Lower source impedance will improve low frequency response and level ratings . . . higher source will reduce them. Units may be used reversed, input to secondary. The frequency response curve on this page is shown to 20 KHz . This descriptive curve is not meant to be restrictive. Units can be used at frequencies well above 20 KHz . Satisfactory applications for frequencies up to and above 250 KHz have been developed.

PULSE APPLICATION

In pulse coupling impedance matching applications, (when measured with a 30 microsecond input pulse voltage wave), typical values for these transformers are:
5% or less droop, zero overshoot and less than 10% backswing.

RELIAIBLITY

The exceptional reliability of DO-T family units, inherent in their unique structure, has been dynamically proven in the field.
SHIELDING
Hipermalloy electromagnetic shield available from stock for all DO-T family units. Order Part Number DOT-SH, or DIT-SH.

DILESIL HIGH TECHNOLOGY DO-T FAMILY TRANSFORMER

- A High Reliability version of the DO-T and DI-T line is available on special order. This alternate construction is designated DILESIL.
- DILESIL construction is intended for fine wire DO-T, DI-T transformers which are used in environments that produce prolonged thermal stress, far exceeding the thermal cycling specification requirements of MIL-T-27.
- DILESIL DO-T's have been approved and qualified by Defense Electronic Supply Command and appear on QPL-27 for MIL-T-27.
- DILESIL construction is recommended for applications requiring extreme reliability under thermal stress. Thousands of these parts have been used in Hi-Rel Military and NASA applicatons for the past thirty years.
- DILESIL DO-T and DI-T transformers are electrically identical to standard DO-T and DI-T parts. However, DILESIL parts are slightly larger than equivalent DO-T and DI-T parts.
- Contact our engineering department for more detailed information.

SPECIALS

For indication of possibilities of DO-T Family units custom built to your special requirements, contact our engineering department.

The stock DO-T Family are Grade 5, Class R units, for a maximum operating temperature of $105^{\circ} \mathrm{C}$ in accordance with MIL-T-27 Specs. On special order they can be designed to Class S requirements of MIL-T-27 $\left(130^{\circ} \mathrm{C}\right.$ maximum operating temperature). No additional life expectancy is gained by ordering Class S insulation systems for applications in the vicinity of Class R temperatures. Where the operating temperatures are above $105^{\circ} \mathrm{C}$, the use of Class S insulations will afford greater life expectancy.

Special units with electrical modifications of changed lead lengths, modified impedance ratios, and additions of electrostatic shields, etc., are available for all DO-T Family units.

[^0]

DO-T ${ }^{\text {r}}$

Transistor Transformers

Transistor Transformers

Locating Line	Type No.	MIL Type	Pri. Imp. Ω	ma D.C. \ddagger in Pri.	Sec. Imp. Ω	$\begin{gathered} \text { Pri. } \\ \operatorname{DCR~} \Omega \end{gathered}$	$\begin{gathered} \text { mw } \\ \text { Level }^{*} \end{gathered}$	Application
1	DI-T44	TF5R21ZZ	$\begin{gathered} 80 \mathrm{CT} \\ 100 \mathrm{CT} \end{gathered}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	32 split 40 split	11.5	500	Interstage
2	DI-T56	TF5R21ZZ	150 CT	10	150 CT	14	500	Coupling
3	DI-T19	TF5R21ZZ	300 CT	7	600	20	500	Output to line
4	DI-T43	TF5R21ZZ	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 6 \end{aligned}$	40 split 50 split	50	500	Interstage
5	DI-T41	TF5R21ZZ	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 400 \text { split } \\ & 500 \text { split } \end{aligned}$	50	500	Interstage or output (Ratio 2:1:1) also wide pulse application
6	DI-T53	TF5R21ZZ	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 4000 \mathrm{CT} \\ & 5000 \mathrm{CT} \end{aligned}$	33	500	Input or driver to low noise transistor
7	DI-T2	TF5R21ZZ	$\begin{aligned} & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	65	100	Output
8	DI-T20	TF5R21ZZ	500 CT	5.5	600	32	500	Output or line to line or mixing
9	DI-T55	TF5R21ZZ	600 CT	4	600 CT	47	500	Isolation or Interstage (Ratio 1:1) also wide pulse application
10	DI-T21	TF5R21ZZ	900 CT	4	600	53	500	Output to line
11	DI-T3	TF5R21ZZ	$\begin{aligned} & 1000 \\ & 1200 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 60 \end{aligned}$	110	100	Output
12	DI-T5	TF5R21ZZ	1200	2	3.2	110	100	Output
13	D1-T22	TF5R21ZZ	1500 CT	3	600	87	500	Output to line
14	DI-T51	TF5R21ZZ	$\begin{aligned} & 2000 \mathrm{CT} \\ & 2500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 2000 \text { split } \\ & 2500 \text { split } \end{aligned}$	180	100	Isolation or Interstage (Ratio 2:1:1) also wide pulse application
15	DI-T37	TF5R21ZZ	$\begin{aligned} & 2000 \mathrm{CT} \\ & 2500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} 8000 \text { split } \\ 10,000 \text { split } \end{array}$	180	100	Isolation or Interstage (Ratio 1:1:1) also wide pulse application
16	DI-T52	TF5R21ZZ	$\begin{aligned} & 4000 \mathrm{CT} \\ & 5000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} 8000 \mathrm{CT} \\ 10,000 \mathrm{CT} \\ \hline \end{array}$	300	100	Interstage Includes electrostatic shield
17	DI-T9	TF5R21ZZ	$\begin{aligned} & 10,000 \\ & 12,000 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 500 \mathrm{CT} \\ & 600 \mathrm{CT} \end{aligned}$	870	100	Output or driver
18	DI-T10	TF5R21ZZ	$\begin{aligned} & 10,000 \\ & 12,500 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1200 \mathrm{CT} \\ & 1500 \mathrm{CT} \end{aligned}$	870	100	Driver
19	DI-T25	TF5R21ZZ	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1500 \mathrm{CT} \\ & 1800 \mathrm{CT} \end{aligned}$	870	100	Interstage
20	DI-T38	TF5R21ZZ	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \text { split } \\ & 2400 \text { split } \end{aligned}$	620	100	Interstage
21	DI-T11	TF5R21ZZ	$\begin{aligned} & 10,000 \\ & 12,500 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2000 \mathrm{CT} \\ & 2500 \mathrm{CT} \end{aligned}$	870	100	Driver
22	DI-T36	TF5R21ZZ	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	970	100	Isolation or Interstage (Ratio 1:1) also wide pulse application
23	DI-T1	TF5R21ZZ	$\begin{aligned} & 20,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \end{aligned}$	$\begin{array}{r} 800 \\ 1200 \end{array}$	815	50	Interstage
24	DI-T23	TF5R21ZZ	$\begin{aligned} & 20,000 \mathrm{CT} \\ & 30,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \end{aligned}$	$\begin{array}{r} 800 \mathrm{CT} \\ 1200 \mathrm{CT} \end{array}$	815	50	Interstage
25	DI-TSH		Drawn Hipe	lloy shield	and cover for DI-T	provides 2	to 30 db	hielding $390{ }^{\prime \prime} \mathrm{h} \times .359^{\prime \prime}$ dia. $1 / 8{ }^{\text {" }}$ hole

NOTES

FREQUENCY RESPONSE:
$\pm 3 \mathrm{db}, 400 \mathrm{~Hz}$ to 100 KHz at 1 mW .
PACKAGING:
DO-T family; see Catalog Page 9

MIL SPECS:

To complete MIL-T-27 Specs. Grade 5. Class R.
unit location key

UNIT LOCATION KEY	
Located	
Type No.	Ln Line
DI-T1	23
DI-T2	7
DIT3	11
DI-T5	12
DI-T9	17
DI-T10	18
DI-T11	21
DI-T19	3
DI-T20	8
DI-T21	10
DI-T22	13
DI-T23	24
DI-T25	19
DI-T36	22
DI-T37	15
DI-T38	20
DI-T41	5
DI-T43	4
DI-T44	1
DI-T51	14
DI-T52	16
DI-T53	6
DI-555	9
DI-T56	2

* For 5\% maximum distortion (a) 1 KHz .
\ddagger ma DC shown is for single ended usage. For push-pull, ma DC can be any balanced vlaue taken by . 5 W transistors.
Where windings are listed as split, $1 / 4$ of the listed impedance is available by paralleling the winding.

DO-T200 and DI-T200 Plug-In Transformers and Inductors

NOTES

PACKAGING

Metal encased. See Catalog Page 9.

MIL SPECS

To complete MIL-T-27 Specs. Ruggedized, metal encased to MIL Grade 5, Class R.

FREQUENCY RESPONSE

At $1 \mathrm{~mW} \pm 3 \mathrm{db}, 300 \mathrm{~Hz}$ to 20 KHz. DO-T Type; $\pm 3 \mathrm{db}, 400$ Hz to 100 KHz , Dl-T Type.

TERMINALS

Leads are .016 Dumet wire, tinned, and may be either welded or soldered. They are uninsulated and are spaced on a. 1 " radius circle, conforming to the termination pattern of the "TO-76" cased semiconductors and micrologic elements.

Type No.	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$	Pri. Imp. Ω	$\begin{gathered} \text { ma D.C. } \ddagger \\ \text { in Pri. } \end{gathered}$	Sec. Imp. Ω	$\begin{aligned} & \text { Pri. } \\ & \text { DCR } \Omega \end{aligned}$	mw Level*	Application
DO-T255	M27/76-07	$\begin{aligned} & 1000 \mathrm{CT} \\ & 1200 \mathrm{CT} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	115	125	Output or matching
D0-T275	M27/76-06	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1500 \mathrm{CT} \\ & 1800 \mathrm{CT} \end{aligned}$	780	125	Interstage
D0-T277	M27/76-05	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2000 \text { split } \\ & 2400 \text { split } \end{aligned}$	560	125	Interstage
D0-T278	M27/76-04	$\begin{aligned} & 10,000 \\ & 12,500 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \mathrm{CT} \\ & 2500 \mathrm{CT} \end{aligned}$	780	125	Driver
D0-T283	M27/76-03	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	975	125	Isolation or Interstage (Ratio 1:1) also pulse application
D0-T288	M27/76-02	$\begin{aligned} & 20,000 \mathrm{CT} \\ & 30,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \end{aligned}$	$\begin{array}{r} 800 \mathrm{CT} \\ 1200 \mathrm{CT} \end{array}$	830	50	Interstage
D0-T297	M27/76-01	200,000 CT	0	1000 CT	8500	25	Input and Chopper

$\overline{\text { DO-T200SH }}$ Drawn Hipermalloy shield provides 15 to 20 db shielding through side of case, $578^{\prime \prime}$ h x $375^{\prime \prime}$ dia. no cover.

DI-T225	M27/103-15	$\begin{gathered} 80 \mathrm{CT} \\ 100 \mathrm{CT} \end{gathered}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 32 \text { split } \\ & 40 \text { split } \end{aligned}$	11.5	500	Interstage
DI-T227	TF5R21ZZ	150 CT	10	150 CT	14	500	Coupling
D-T230	M27/103-14	300 CT	7	600 CT	20	500	Output or line to line or matching
DI-T235	M27/103-13	$\begin{aligned} & \hline 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 40 \text { split } \\ & 50 \text { split } \end{aligned}$	50	500	Interstage
DI-T240	M27/103-12	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 400 \text { split } \\ & 500 \text { split } \end{aligned}$	50	500	Interstage or output (Ratio 2:1:1) also wide pulse application
DI-T245	M27/103-11	$\begin{aligned} & 500 \mathrm{CT} \\ & 600 \mathrm{CT} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 50 \mathrm{CT} \\ & 60 \mathrm{CT} \end{aligned}$	65	500	Output or matching
D-T250	M27/103-10	500 CT	5.5	600 CT	32	500	Output or line to line or mixing or matching
D-T228	TF5R21ZZ	600 CT	3	75 CT	56	500	Output or line to line matching
D-T255	M27/103-09	$\begin{aligned} & 1000 \mathrm{CT} \\ & 1200 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \mathrm{CT} \\ & 60 \mathrm{CT} \end{aligned}$	110	500	Output or matching
DI-T260	M27/103-08	1500 CT	3	600 CT	87	500	Output to line or matching
DI-T265	M27/103-07	$\begin{aligned} & 2000 \mathrm{CT} \\ & 2500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	$\begin{array}{r} 8000 \text { split } \\ 10,000 \text { split } \end{array}$	180	100	Isolation or Interstage (Ratio 1:1:1) also wide pulse application
DI-T270	M27/103-06	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \mathrm{CT} \\ & 600 \mathrm{CT} \end{aligned}$	870	100	Output or driver
DI-T273	M27/103-05	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,500 \mathrm{CT} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \mathrm{CT} \\ & 1500 \mathrm{CT} \end{aligned}$	870	100	Output or driver
DI-T276	M27/103-04	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \mathrm{CT} \\ & 2400 \mathrm{CT} \end{aligned}$	870	100	Interstage or driver
DI-T278	M27/103-03	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,500 \mathrm{CT} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2000 \text { split } \\ & 2500 \text { split } \\ & \hline \end{aligned}$	620	100	Interstage or driver
DI-T283	M27/103-01	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$	970	100	Isolation or Interstage (Ratio 1:1) also wide pulsé application
DI-T288	M27/103-02	$\begin{aligned} & 20,000 \mathrm{CT} \\ & 30,000 \mathrm{CT} \\ & \hline \end{aligned}$	$\begin{array}{r} .5 \\ .5 \\ \hline \end{array}$	$\begin{array}{r} 800 \mathrm{CT} \\ 1200 \mathrm{CT} \\ \hline \end{array}$	815	50	Interstage or driver
DI-T290	M27/103-16	600 CT	4	600 CT	47	500	Isolation or Interstage (Ratio 1:1) also wide pulse application

DI-T200SH
Drawn Hipermalloy shield provides 15 to 20 db shielding through side of case,
421 " $\mathrm{h} \times .375$ " dia. no cover.

[^1]
Ultraminiature Plug-In Transformers and Inductors

Fig. 1

Fig. 2

TRANSFORMERS

Part No.	Matching Impedance		Max DC Ma Unbal in Pri	$\begin{gathered} \text { DCR } \\ \pm 25 \% \end{gathered}$		Max Power* level MW at 300 Hz	Overall Turns Ratio	Connection Fig.
RST. 09	10K CT	10KCT	1.0	1000	1300	40	1:1	1
RST-11	10K CT	2 KCT	1.0	1000	300	40	2.23:1	1
RST-17	10 KCT	500 CT	1.0	1000	80	40	4.47:1	1
RST-18	10K CT	4	1.0	1200	1.0	40	50:1	3
RST-24	1.5 KCT	600	3.0	160	95	50	1.58:1	3
RST-31	600 CT	600 CT	3.0	70	95	50	1:1	1
RST-36	600 CT	3.2	4.5	60	0.7	50	13.7:1	3
RST-38	500	500 split	3.0	65	90	50	1:1	2
RST-42	150	12	10.0	20	2.5	50	3.54:1	4
RST-46	600	600	3.0	72	93	50	1:1	4

Maximum distortion at rated power is 25%.
INDUCTORS

Part No.	Inductance HY	DC Ma	DCR $\pm 25 \%$	Connection Fig.
RSI-01	6	2.0	1800	5
RSI-02	3.5	2.0	1200	5
RSI-04	.3	4.0	40	5

MECHANICAL DIMENSIONS

NOTES

All RST Transformers and RSI Inductors are designed and constructed to meet the requirements of MIL-T-27 Grade 5, Class S.
RST is Type TF5S21ZZ
RSI is Type TF5S20ZZ
Size: . $310 \times .410 \times .465$
Weight: . 1 oz .
Tinned nickel leads - .02D.
Molded case construction with base mounting pad. Insulation Test Voltage 1000V RMS.
Frequency Response $\pm 2 \mathrm{db} 300 \mathrm{~Hz}$ to 100 KHz .

Plug-In Transistor Transformers

NOTES

PACKAGING

The TOP series construction is similar to the popular DOT family of products.
They are metal encased, hermetically sealed to Grade 5 of MIL-T-27. The TOP-1000, -2000 and -3000 series provides plug-in .016 Dumet leads. The TOP-4000 series is offered with . 020 Dumet leads.

PERFORMANCE

The larger-sized TOP series provides more power handling capability and better frequency response at lower frequencies. The TOP-1000 provides a lower profile $(.35 \mathrm{H})$ structure than the DOT size (.562H) with similar performance characteristics.

TYPICAL

PERFORMANCE AT 1MW:

TOP-1000
$\pm 3 \mathrm{db} 300 \mathrm{~Hz}-75 \mathrm{KHz}$
TOP-2000
$\pm 3 \mathrm{db} 150 \mathrm{~Hz}-75 \mathrm{KHz}$
TOP-3000
$\pm 3 \mathrm{db} 50 \mathrm{~Hz}-30 \mathrm{KHz}$
TOP-4000
$\pm 3 \mathrm{db} 20 \mathrm{~Hz}-25 \mathrm{KHz}$

APPLICATIONS

Coupling, matching and isolation product capability parallels our DOT series. We invite your attention to comments on application as shown on page 9 .

MIL SPECS

MIL-T-27, Class S, Grade 5, MIL Designation TF5S21ZZ. The TOP-1000, -2000, -3000 series have been assigned MIL-T-27 part numbers.

DIMENSIONS

	A		
	MAX.	MAX.	M
:---:			
M.25			

TOP-1000 SERIES FREQUENCY RESPONSE ± 3 DB $300 \mathrm{~Hz}-75 \mathrm{KHz}$ at 1 mW
TF5S21ZZ

Type №.	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$	$\begin{aligned} & \text { Pri. } \\ & \text { Imp. }(\Omega) \\ & \hline \end{aligned}$	ma DC in Pri.	Sec. Imp. (Ω)	Power (Watts) \dagger			$\begin{aligned} & \text { DCR } \\ & \text { Pri./Sec. } \\ & (\pm 25 \%) \end{aligned}$	$\begin{gathered} \text { Turns } \\ \text { Ratio } \\ \text { Pri./Sec. } \end{gathered}$
					at 1 KHz \& Higher	at 400 Hz	at 300 Hz		
TOP-1265	M27/361-01	150 CT	11	150 Split	. 6	. 3	. 16	13/18.3	1/1
TOP-1270	M27/361-02	150 CT	11	600 Split	. 6	. 3	. 16	13/75	1/2
TOP-1290		300 CT	8	150 Split	. 6	. 3	. 16	30/18	1.41/1
TOP-1344		500 CT	6	16 Split	. 6	. 3	. 16	48/1.9	5.60/1
TOP-1380	M27/361-03	600 CT	5.5	600 Split	. 6	. 3	. 16	57/79	1/1
TOP 1385*	M27/361-04	600 CT	5.5	600 CT	. 6	. 3	. 16	53/75	1/1
TOP-1387*	M27/361-05	600 CT	5.5	1,200 Split	. 6	. 3	. 16	53/105	1/1.41
TOP-1430		1,000 CT	4.5	1,000 Split	. 6	. 3	. 16	103/115	1/1
TOP-1490*	M27/361-06	2,000 CT	3	2,000 CT	. 6	. 3	. 16	198/218	1/1
TOP-1495	M27/361-07	2,000 CT	3	8,000 Split	. 6	. 3	. 16	198/850	1/2
TOP-1640	M27/361-08	10,000 CT	1.4	10,000 Split	. 6	. 3	. 16	855/1215	1/1
TOP-1645*	M27/361-09	10,000 CT	1.4	10,000 CT	. 6	. 3	. 16	1060/1215	1/1
TOP-1655	M27/361-10	15,000 CT	1	600 Split	. 6	. 3	. 16	1305/72.5	5/1

TOP-1000SH Drawn Hipermalloy Shield-. 53 O.D. x . 40 H

TOP-2000 SERIES FREQUENCY RESPONSE ± 3 DB $150 \mathrm{~Hz}-75 \mathrm{KHz}$ at 1 mW
TF5S21ZZ

Type No.	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$	$\begin{gathered} \text { Pri. } \\ \text { Imp. }(\Omega) \end{gathered}$	ma DC in Pri.	Sec. Imp. (Ω)	Power (Watts) \dagger			$\begin{aligned} & \text { DCR } \\ & \text { Pri./Sec. } \\ & (\pm 25 \%) \end{aligned}$	$\begin{gathered} \text { Turns } \\ \text { Ratio } \\ \text { Pri./Sec. } \end{gathered}$
					at 1 KHz \& Higher	at 400 Hz	at 150 Hz		
TOP-2265	M27/362-01	150 CT	8	150 Split	1	. 75	. 075	12/20	1/1
TOP-2270	M27/362-02	150 CT	8	600 Split	1	. 75	. 075	12/82	1/2
TOP-2300		300 CT	5	600 Split	1	. 75	. 075	27/66	1/1.41
TOP-2375		600 CT	4	200 Split	1	. 75	. 075	60/25	1.73/1
TOP-2380	M27/362-03	600 CT	4	600 Split	1	. 75	. 075	60/66	1/1
TOP-2385*	M27/362-04	600 CT	4	600 CT	1	. 75	. 075	60/68	1/1
TOP-2387	M27/362-05	600 CT	4	1,200 Split	1	. 75	. 075	60/116	1/1.41
TOP-2490*	M27/362-06	2,000 CT	2	2,000 CT	1	. 75	. 075	175/240	1/1
TOP-2495	M27/362-07	2,000 CT	2	8,000 Split	1	. 75	. 075	185/1015	1/2
TOP-2640	M27/362-08	10,000 CT	1	10,000 Split	1	. 75	. 075	780/1075	1/1
TOP-2645*	M27/362-09	10,000 CT	1	10,000 CT	1	. 75	. 075	715/985	1/1
TOP-2655	M27/362-10	15,000 CT	. 8	600 Split	. 66	. 66	. 075	1165/80	5/1
TOP-2695	M27/362-11	20,000 CT	. 7	1,000 Split	. 5	. 5	. 075	1750/135	4.47/1
TOP-2814	M27/362-12	100,000 CT	. 3	2,000 Split	. 1	. 1	. 075	10,000/248	7.07/1

[^2]

7 LEADS EQUALLY SPACED AS FOR 8

TOP- $\mathbf{3 0 0 0}$ SERIES FREQUENCY RESPONSE ± 3 DB $50 \mathrm{~Hz}-30 \mathrm{KHz}$ at 1 mW

Type No .	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$	$\begin{aligned} & \text { Pri. } \\ & \text { Imp. }(\Omega) \end{aligned}$	$\begin{gathered} \operatorname{ma~DC~}_{\text {in Pri. }} \end{gathered}$	Sec. Imp. (Ω)	Power (Watts) \dagger			$\begin{aligned} & \text { DCR } \\ & \text { Pri./Sec. } \\ & (\pm 25 \%) \end{aligned}$	$\begin{gathered} \text { Turns } \\ \text { Ratio } \\ \text { Pri./Sec. } \end{gathered}$
					at 1 KHz \& Higher	at 300 Hz	at 50 Hz		
TOP-3030		100 CT	10	100 Split	2	1.5	. 03	8/11	1/1
TOP-3065	M27/363-01	150 CT	8	150 Split	2	1.5	. 03	12/16.5	1/1
TOP-3070	M27/363-02	150 CT	8	600 Split	2	1.5	. 03	12/66	1/2
TOP-3145		500 CT	4.5	50 Split	2	1.5	. 03	40/5.5	3.16/1
TOP-3165		600 CT	4	12.8 Split	2	1.5	. 03	48/1.41	6.85/1
TOP-3180	M27/363-03	600 CT	4	600 Split	2	1.5	. 03	48/66	1/1
TOP-3185*	M27/363-04	600 CT	4	600 CT	2	1.5	. 03	48/66	1/1
TOP-3187	M27/363-05	600 CT	4	1,200 Split	2	1.5	. 03	48/132	1/1.41
TOP-3290*	M27/363-06	$2,000 \mathrm{CT}$	2.2	2,000 CT	2	1.5	. 03	160/220	1/1
TOP-3295	M27/363-07	2,000 CT	2.2	8,000 Split	2	1.5	. 03	160/880	1/2
TOP-3440	M27/363-08	10,000 CT	1	10,000 Split	1	1	. 03	800/1100	1/1
TOP-3445*	M27/363-09	10,000 CT	1	10,000 CT	1	1	. 03	800/1100	1/1
TOP-3455	M27/363-10	15,000 CT	. 8	600 Split	. 66	. 65	. 03	1200/66	5/1
TOP-3495	M27/363-11	20,000 CT	. 7	1,000 Split	. 5	. 5	. 03	1600/110	4.47/1
TOP-3614	M27/363-12	100,000 CT	. 3	2,000 Split	. 1	. 1	. 03	8000/220	7.07/1

TOP-3000SH Drawn Hipermalloy Shield-. 78 O.D. x .57 H
\dagger For 5\% Dist at Rated Frequency.

TOP-4000 SERIES FREQUENCY RESPONSE ± 3 DB $20 \mathrm{~Hz}-25 \mathrm{KHz}$ at $1 \mathrm{~mW}, 0$ DC
TF5S21ZZ

Type №.	$\begin{gathered} \text { Pri. } \\ \text { Imp. (} \Omega \text {) } \end{gathered}$	ma DC in Pri.	Sec. Imp. (Ω)	Power (Watts) \dagger			DCR Pri./Sec.$(\pm 25 \%)$	$\begin{gathered} \text { Turns } \\ \text { Ratio } \\ \text { Pri./Sec. } \end{gathered}$
				at 1 KHz \& Higher	at 300 Hz	at 20 Hz		
TOP-4030	100 CT	10	100 Split	3	2	. 006	8/10	1/1
TOP-4065	150 CT	8	150 Split	3	2	. 006	12/15	1/1
TOP-4070	150 CT	8	600 Split	3	2	. 006	12/60	1/2
TOP-4095	300 CT	5.5	300 Split	3	2	. 006	24/30	1/1
TOP-4165	600 CT	4	12.8 Split	3	2	. 006	48/1.3	6.85/1
TOP-4180	600 CT	4	600 Split	3	2	. 006	48/60	1/1
TOP-4185*	600 CT	4	600 CT	3	2	. 006	48/60	1/1
TOP-4187	600 CT	4	1,200 Split	3	2	. 006	48/120	1/1.41
TOP-4215	900 CT	3	600 Split	3	2	. 006	72/60	1.22/1
TOP-4290*	2,000 CT	2.2	2,000 CT	3	2	. 006	160/200	1/1
TOP-4295	2,000 CT	2.2	8,000 Split	3	2	. 006	160/800	1/2
TOP-4440	10,000 CT	1	10,000 Split	1	1	. 006	800/1000	1/1
TOP-4445*	10,000 CT	1	10,000 CT	1	1	. 006	800/1000	1/1
TOP-4455	$15,000 \mathrm{CT}$. 8	600 Split	. 66	. 66	. 006	1200/60	5/1
TOP-4495	20,000 CT	. 7	1,000 Split	. 5	. 5	. 006	1600/100	4.47/1

*E.S. Shield

NOTES

PACKAGING:
Metal encased DO-T family units. See page 9 for general data.

MIL SPECS:
To complete MIL-T-27 specs. Ruggedized, metal incased to MIL Grade 5, Class S requirements.

FREQUENCY RESPONSE:

AT 1MW
TOP-1000 Series: $\pm 3 \mathrm{db}, 300 \mathrm{~Hz}$ to 75 KHz
TOP-2000 Series: $\pm 3 \mathrm{db}, 150 \mathrm{~Hz}$ to 75 KHz
TOP-1000 Series: $\pm 3 \mathrm{db}, 50 \mathrm{~Hz}$ to 30 KHz
TOP-1000 Series: $\pm 3 \mathrm{db}, 20 \mathrm{~Hz}$ to 25 KHz

TERMINALS:

Leads are .016D. Dumet wire for the TOP-1000, TOP-2000 and TOP-3000. The TOP-4000 has .020D. Dumet wire. All leads are tinned and can be soldered or welded.

MTC
 Telephone Interconnect Transformers

APPLICATIONS

MTC (MIL-T-27) transformers, designed for coupling applications feature unbalanced DC current ratings of up to 120 mA - higher than competitive units - while longitudinal balance per FCC 68.310 specification is greater than 60 dB .

The 2-wire to 4 -wire hybrid transformer is noteworthy in that it can carry up to 100 mA unbalanced DC current through its primary, and has greater than 60 dB trans-hybrid loss over the $300-\mathrm{Hz}$ to $4-\mathrm{KHz}$ frequency band.

Dielectric strength exceeds 1500 volts AC.

SCHEMATICS

MTC-1006

FIGURE 1

FIGURE 2

FIGURE 3

Type	MIL Part No.	A	B	Unit Height	$\begin{gathered} \text { C } \\ \pm .010 \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ \pm .010 \\ \hline \end{gathered}$	$\begin{gathered} \text { E } \\ \pm .010 \end{gathered}$	$\begin{gathered} \text { F } \\ \pm .010 \\ \hline \end{gathered}$	$\begin{array}{r} \text { G, Dia. } \\ +.005 \end{array}$	$\begin{aligned} & \mathrm{H}, \mathrm{Sq} . \\ & \pm .005 \end{aligned}$	$\begin{aligned} & \text { Pin } \mathrm{Ht} \text {. } \\ & \pm .030 \end{aligned}$
MTC-006	M27/323-01	. 875	1.093	. 719	. 20	. 50	. 15	-	. 025	-	. 125
MTC-076	M27/323-02	1.562	1.875	. 750	. 25	1.00	. 375	. 75	-	. 025	. 156
MTC-109	M27/323-03	1.562	1.875	1.156	. 40	1.00	. 20	. 80	-	. 025	. 343
MTC-126	M27/323-04	1.562	1.875	1.156	. 40	1.00	. 20	. 80	-	. 025	. 343
MTC-1006	M27/323-05	1.625	2.812	1.156	. 20	2.30	-	-	-	. 025	. 125

| Type No. | MIL
 Part No. | Application | Primary
 Impedance(Ohms) | DCR | Max Unbalanced
 DC Current (mA) | Secondary
 Impedance (Ohms) | DCR | Size |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| MTC-006 | M27/323-01 | Coupling | 600 | 33 | 0 | 600 | 35 | Figure 1 |
| MTC-076 | M27/323-02 | Coupling | 600 CT | 44 | 70 | 600 CT | 51 | Figure 2 |
| MTC-109 | M27/323-03 | Coupling | 900 CT | 32 | 100 | 600 CT | 21 | Figure 2 |
| MTC-126 | M27/323-04 | Coupling | 600 CT | 22 | 120 | 600 CT | 21 | Figure 2 |
| MTC-1006 | M27/323-05 | Hybrid | 600 Split | | $100 \ddagger$ | $600 / 600$ | | Figure 3 |

Series	Frequency Response	Max. Power Level	Longitudinal Balance	Maximum Distortion	Impedance Matching	Return Loss	Hybrid-transHybrid Loss
MTC-006	$\pm .50 \mathrm{~dB}, 300 \mathrm{~Hz}-4 \mathrm{kHz}$	+7 dBm	60 dB min.	0.5\%	-	26 dB min.*	-
MTC-076	$\pm .75 \mathrm{~dB}, 300 \mathrm{~Hz}-4 \mathrm{kHz}$	$+10 \mathrm{dBm}$	60 dB min.	0.5\%	-	10 dB min.*	-
MTC-109	$\pm .75 \mathrm{~dB}, 300 \mathrm{~Hz}-4 \mathrm{kHz}$	$+10 \mathrm{dBm}$	60 dB min.	0.5\%	-	10 dB min.*	-
MTC-126	$\pm .75 \mathrm{~dB}, 300 \mathrm{~Hz}-4 \mathrm{kHz}$	$+10 \mathrm{dBm}$	60 dB min .	0.5\%	-	10 dB min.*	-
MTC-1006	$\pm .50 \mathrm{~dB}, 300 \mathrm{~Hz}-4 \mathrm{kHz}$	$+10 \mathrm{dBm}$	60 dB min .	0.5\%	-	11 dB min.*	60 dB min.

[^3]
MILITARY/INDUSTRIAL Audio Transformers and Inductors

UTC Ouncers, Subouncers and Sub-subouncers have been the industry quality standard in audio transformers for years. Now available in PC board units, with plug-in leads compatible with wave soldering, they are the industry's labor and cost saving standards as well.

TYPES:

OUNCERS:

0 - Impregnated and sealed in drawn aluminum housing.
PC-O - Open frame, plug-in leads.

SUBOUNCERS:

PC-SO - Open frame, plug-in leads.
SO \#P - Hermetically sealed to complete MIL-T-27 Specs, Grade 5, Class R, with plug-in leads.

SUB-SUBOUNCERS:

PC-SSO - Open frame, plug-in leads.
SSO \#P - Hermetically sealed to complete MIL-T-27 Specs, Grade 5,Class R, with plug-in leads.

APPLICATIONS

These miniature transformers are used in modems, data sets, communications equipment, instrumentation, multi-channel audio consoles, for isolation, balanced to unbalanced lines, signal splitting, phase reversal and impedance matching.

NOTES

FREQUENCY RESPONSE

Ouncers: 100 Hz to 40 KHz . Subouncers: 200 Hz to 20 KHz . Sub-subouncers: 300 Hz to 20 KHz .

SHIELDING

Ouncer: Hipermalloy shield, 1" O.D., is designed to slip fit over cased ouncer units, provides 25 db of shielding. PC-O Hipermalloy shield, $1.062^{\prime \prime}$ max. x $1.125^{\prime \prime}$ max. x $0.781^{\prime \prime}$ max., is designed to slip fit over PC-O style parts.

SPECIALS

Any open frame type is available molded. Metal encased types to MIL Grade 4 can be made to your specifications.

0

PC-O

SO-P

PC-SO

SSO-P

PC-SSO

O, PC-O
 Compact Audio Transformers and Inductors

[^4]
O, PC-O
 Compact Audio Transformers and Inductors

See chart on page 20 for Polarity.

TYPICAL O-LINE RESPONSE CURVES

TYPICALO-LINE RESPONSE CURVES

NT
8
8

O-LINE UNIT

OUNCER TERMINALS
(0.156 HIGH)
0.109 DIA. EQUALLY SPACED AS FOR 8 ON A 0.578 DIA.

$$
-2| | e^{-6}
$$

FIG. 8

FIG. 13
OLINE

O-BR

O-BR MOUNTING
BRACKET
NATIONAL-22 GA.
(.030) CRS

FINISH: HOT TIN DIP

EXTRUDED \&
TAPPED HOLE FOR
\#4-40 SCREW (2)

PC-O

SO-P, PC-SO Miniature Audio Transformers and Inductors

Key to SO Line So- Line Type Number
$10-36$
$30-34$
$11-26$
$6-32$
$37-38$
$7-35$
$21-31$
$24-28$
$1-16$
$3-23$
15
$9-14$
$5-13$
$4-8$
17
25
$20-33$
$19-27$
29
$18-22$

Input Winding						Frequency Response 200 Hz - 20KHz - Working Voltage: 175 Peak									
	Type	Type		E.T. Product	Unbal.	InputMatching Impedance	OutputMatching Impedance			Series DCR \pm	Connected 25\% Ohms	Turns	atio $\pm 3 \%$		Pins
Line	$\begin{aligned} & \text { No. } \\ & \text { PC-SO } \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { SO-P } \end{aligned}$	MIL Part No. for Type SO-P	Millivolt Sec.	DC main Winding	Primary (Ohms)	Secondary (Ohms)	DBM	M.W.	$\begin{aligned} & \ln \\ & \text { Pri. } \end{aligned}$	$\begin{aligned} & \text { Out } \\ & \text { Sec. } \end{aligned}$	Pri.	Sec.	Schem. PC/P	Arrange PC/P
1	9	9	M27/165-06	1.5	0	3.2	500 CT	+24	250	0.35	15	1	12.5	$13 / 7$	E/C
3	10	10	M27/165-09	4.6	60	$\begin{aligned} & \hline 8 \\ & 16 \end{aligned}$	$\begin{aligned} & 2000 \mathrm{LT} \\ & 4000 \mathrm{CT} \end{aligned}$	+24	250	2	290	1	15.9	$13 / 7$	E/C
4	14	14	M27/165-01	5.2	10	$\begin{aligned} & 32 \text { split } \\ & 40 \text { split } \end{aligned}$	$\begin{aligned} & 80 \mathrm{CT} \\ & 100 \mathrm{CT} \end{aligned}$	+24	250	3.2	4.9	1	1.58	4/9	E/D
5	13	13	M27/165-03	5.8	2.5	$\begin{aligned} & 40 \text { split } \\ & 50 \text { split } \end{aligned}$	$\begin{aligned} & \hline 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$+24$	250	4.5	20	1	3.16	4	E
6	4	4	M27/165-16	3.7	24	50	30K	+23	200	3.8	1850	1	24.5	8	E
7	6	6	M27/165-18	3.2	20	60	100 K	+23	200	3.7	3400	1	40	8	E
8	14	14	M27/165-01	8.3	16	$\begin{aligned} & 80 \mathrm{CT} \\ & 100 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 32 \text { split } \\ & 40 \text { split } \end{aligned}$	+24	250	4.9	3.2	1.58	1	4/9	E/D
9	12	12	M27/165-04	10	14	$\begin{aligned} & 120 \text { split } \\ & 150 \text { split } \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$+24$	250	12.6	20	1	1.82	4	E
10	1	1	M27/165-02	1.2	0	$\begin{aligned} & 200 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \mathrm{~K} \\ & 62.5 \mathrm{~K} \end{aligned}$	$+10$	10	16	2500	1	35	8	E
11	3	3	M27/165-11	10	$\begin{aligned} & 21 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 \mathrm{~K} \\ & 25 \mathrm{~K} \\ & \hline \end{aligned}$	+23	200	30	1225	1	7.1	8/1	E/A
13	13	13	M27/165-03	18	8	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	40 split 50 split	$+24$	250	20	4.5	3.16	1	4	E
14	12	12	M27/165-04	18	8	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 120 \text { split } \\ & 150 \text { split } \end{aligned}$	+24	250	20	12.5	1.82	1	4	E
15	11	11	M27/165-05	18	8	$\begin{aligned} & 400 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 400 \text { split } \\ & 500 \text { split } \end{aligned}$	$+24$	250	20	45	1	1	4	E
16	9	9	M27/165-06	19	0	500 CT	3.2	+24	250	15	. 35	12.5	1	13/7	E/C
17	15	15	M27/165-07	23	6	600 CT	600 split	+24	250	35	60	1	1	4/9	E/D
18	22	22	TF5R21ZZ	28	5	900 split	600 split	+24	250	72	44	1.22	1	6	E
19	20	20	M27/165-08	32	4	600 split \dagger	10KCT	+23	200	80	1050	1	4.08	5	E
20	18	18	M27/165-17	23	9	600 split	50 KCT	+24	250	63	2400	1	9.1	4/9	E/D
21	7	7	M27/165-15	9.2	2.5	$\begin{aligned} & 800 \\ & 1200 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \mathrm{~K} \\ & 30 \mathrm{~K} \\ & \hline \end{aligned}$	+23	200	32	450	1	5	8/1	E/A
22	22	22	TF5R21Z7	23	6	600 split	900 split	$+24$	250	44	72	1	1.22	6	E
23	10	10	M27/165-09	7.4	$\begin{array}{r} 4 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 2 \mathrm{KCT} \\ & 4 \mathrm{KCT} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 16 \end{aligned}$	+24	250	290	2	15.9	1	13/7	E/C
24	8	8	M27/165-12	15	2.2	2 KCT	10K	+23	200	40	1000	1	2.23	$2 / 3$	E/B
25	16	16	M27/165-10	46	4	2500 CT	2500 split	+24	250	140	300	1	1	4	E
26	3	3	M27/165-11	74	$\begin{aligned} & \hline 3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \\ & \hline \end{aligned}$	+23	200	1225	30	7.1	1	8/1	E/A
27	20	20	M27/165-08	133	1	$10 \mathrm{KCT} \dagger$	600 split	+23	200	1050	80	4.08	1	6	E
28	8	8	M27/165-12	34	1	10K	2000 CT	+23	200	1000	40	2.23	1	2/3	E/B
29	21	21	M27/165-13	111	1	$\begin{aligned} & 10 \mathrm{KCT} \dagger \\ & 12 \mathrm{KCT} \dagger \\ & \hline \end{aligned}$	10K split 12K split	+23	200	855	1080	1	1	5	E
30	2	2	M27/165-14	10	. 25	10K	90K	$+20$	100	215	1850	1	3	8/1	E/A
31	7	7	M27/165-15	46	. 5	$\begin{aligned} & 20 \mathrm{~K} \\ & 30 \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 1200 \\ & \hline \end{aligned}$	$+23$	200	450	32	5	1	8/1	E/A
32	4	4	M27/165-16	91	1	30K	50	+23	200	1850	3.8	24.5	1	8	E
33	18	18	M27/165-17	100	1	50 KCT	600 split	+24	250	2400	63	9.1	1	4/9	E/D
34	2	2	M27/165-14	29	0	90K	10 K	+20	100	1850	215	3	1	$8 / 1$	E/A
35	6	6	M27/165-18	130	. 5	100K	60	+23	200	3400	3.7	40	1	8	E
36	1	1	M27/165-02	44	0	$\begin{aligned} & \hline 250 \mathrm{~K} \\ & 62.5 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 200 \\ & 50 \\ & \hline \end{aligned}$	+10	10	2500	16	35	1	8	E

\dagger Electrostatic Shield.

INDUCTORS

37	S0-5	Inductor, 50 Hys @ 1 maDC, 2675 ohms DC res.		
38	$\begin{aligned} & \hline \text { SO-5P } \\ & \text { PC-S05 } \\ & \hline \end{aligned}$	Split Series: 40 Hys @ 1 maDC, 20 Hys @ 2 maDC, 2675 ohms Inductor Parallel: 10 Hys @ 2 maDC, 5 Hys @ 4 maDC, 670 ohms	11/10	E/A

SHIELDS Drawn Hipermalloy Shield provides 20 db Shielding

PC-SO-SH $0.968^{\prime \prime} \mathrm{Sq} \times 0.625^{\prime \prime} \mathrm{H}$	
SO-P.SH	$1.062^{\prime \prime} \mathrm{L} \times 0.812^{\prime \prime} \mathrm{W} \times 0.734^{\prime \prime} \mathrm{H}$

SO-P, PG-SO Miniature Audio Transformers and Inductors

TYPES

PC-SO - Printed circuit board mounting open frame
SO-P - Hermetically sealed type to complete MIL-T-27 Specs, Grade 5, Class R.

NOTES

ON PERFORMANCE CHARACTERISTICS

- To present the widest range of application, matching impedance values are listed in order of increasing impedance value without regard to the traditional designation of primary or secondary winding.
- The primary and secondary winding can be used arbitrarily as the input or output.
- Impedance values written one above the other indicate a range of matching impedances over which the parts will give satisfactory performance as long as the impedance ratio is maintained.
- Impedance values separated by a slash indicate the series and parallel connected impedance value of the windings.
- PC-SO Types have terminal arrangements that permit the connection of series or parallel windings by bridging adjacent terminals (see Fig. 12). This eliminates unwanted cross overs on the PC board when split is available.
(E.T. is the maximum voltage, time product for a single pulse applied to the winding.)

PIN ARRANGEMENT (Pins not used are removed. These are indicated by " x.")

Fig. A

Fig. B

Fig. C

Fig. D

Fig E^{\dagger}

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8
Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

SO-P

. 040 DIA. PIN
UP TO 8
. 200 APART

PC-SO

. 040 DIA. PINS
AS REQUIRED
UP TO 8
\dagger Pin numbers not shown in schematic will be missing.

- On PC-SO-2 and SO-2P, Hi Z and Lo Z are reversed.

SSO-P, PC-SSO
 Sub-Miniature Audio Transformers and Inductors

Input Winding					$300 \mathrm{~Hz}-20 \mathrm{KHz}$ - Working Volts: 175 Peak									
				Unbal.			Maximı	n Level	Series C $\mathrm{DCR} \pm 2:$	onnected \% Ohms	Turns F	tio $\pm 3 \%$		Pins Ar-
Line	Type No. PC-SSO	$\begin{aligned} & \text { Type } \\ & \text { No. } \\ & \text { SSO-P } \end{aligned}$	Product Millivolt Sec.	DC ma In Winding	Input-Matching Impedance Primary (Ohms)	Output-Matching Impedance Secondary (Ohms)	DBM	M.W.	$\begin{gathered} \text { In } \\ \text { Pri. } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Out } \\ \text { Sec. } \\ \hline \end{array}$	Pri.	Sec.	Schematic Catalog PC/P	Catalog PC/P
1	16	16	1.2	54	$\begin{aligned} & 3.2 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & 1500 \\ & \hline \end{aligned}$	+20	100	. 45	70	1	18.1	9	F
2	10	10	1.5	54	3.2	10K	+20	100	. 65	800	1	55.5	9	F
3	29	29	2.5	26	$\begin{aligned} & \text { 12.8/3.2 split* } \\ & \text { 16.0/4 split } \end{aligned}$	$\begin{aligned} & 500 / 125 \text { split* } \\ & 600 / 150 \text { split } \end{aligned}$	+20	100	1.5	36.2	1	6.11	6	F
4	36	36	2.5	26	$\begin{aligned} & \text { 12.8/3.2 split* } \\ & \text { 16.0/4 split* } \end{aligned}$	4K/1K split 5K1.25K split	+20	100	1.5	327	1	17.6	6	F
5	38	38	2.5	26	$\begin{aligned} & \text { 12.8/3.2 split* } \\ & \text { 16.0/4 split } \end{aligned}$	$\begin{aligned} & 8 \mathrm{~K} / 2 \mathrm{~K} \text { split } \\ & 10 \mathrm{~K} 2.5 \mathrm{~K} \text { split } \end{aligned}$	+20	100	1.5	600	1	25	6	F
6	9	9	3.3	26	16	10K	+20	100	2.7	800	1	25	9	F
7	11	11	2.5	11	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & \hline \end{aligned}$	+20	100	5	50	1	3.16	9	F
8	30	30	2.5	11	$\begin{aligned} & \text { 50/12 split* } \\ & 60 / 15 \text { split* } \end{aligned}$	$\begin{aligned} & 500 / 125 \text { split } \\ & 600 / 150 \text { solit } \end{aligned}$	+20	100	6.5	36	1	3.16	6	F
9	12	12	2.5	11	$\begin{aligned} & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1200 \\ & \hline \end{aligned}$	+20	100	5.0	90	1	4.45	9	F
10	4	4	2.6	11	50	30K	+20	100	4.6	2875	1	24.5	9	F
11	6	6	2.0	15	60	100K	+20	100	3.3	3500	1	40	9	F
12	28	28	5.5	10	$\begin{aligned} & \text { 48/12 split* } \\ & 100 / 25 \text { split }^{*} \end{aligned}$	$\begin{aligned} & \text { 48/12 split }{ }^{*} \\ & 100 / 25 \text { split* } \end{aligned}$	+20	100	5.9	6.9	1	1	6	F
13	44	44	1.2	0	$\begin{aligned} & \text { 100/25 split } \dagger \dagger \\ & \text { 200/50 split } \dagger \end{aligned}$	$\begin{aligned} & 100 \mathrm{~K} \text { CT } \\ & 200 \mathrm{~K} \mathrm{CT} \end{aligned}$	+7	5	4.1	3290	1	31.6	5	F
14	34	34	10	0	$\begin{aligned} & \text { 200/50 split } \\ & \text { 240/60 split } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{~K} / 250 \text { split }^{*} \\ & 1200 / 300 \text { split* } \end{aligned}$	+20	100	19	102	1	2.23	6	F
15	3	3	7.7	$\begin{array}{r} 10 \\ 5 \end{array}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$	+20	100	34	2500	1	7.1	9/1	F/A
16	14	14	4.7	$\begin{array}{r} 14 \\ 7 \end{array}$	$\begin{aligned} & 200 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 10 \mathrm{KCT} \\ & 25 \mathrm{KCT} \end{aligned}$	+20	100	22	560	1	7.07	13/3	F/C
17	39	39	7.7	$\begin{array}{r} 10 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 200 / 50 \text { split } \\ & 500 / 125 \text { split } \end{aligned}$	$\begin{aligned} & \hline 10 \mathrm{~K} 2.5 \mathrm{~K} \text { split } \\ & 25 \mathrm{~K} / 6.25 \mathrm{~K} \text { split } \\ & \hline \end{aligned}$	+20	100	34	2500	1	7.1	6	F
18	26	26	5.7	12	$\begin{aligned} & \text { 400/100 split } \\ & 500 / 125 \text { split } \end{aligned}$	$\begin{aligned} & \hline 40 \mathrm{KCT} \\ & 50 \mathrm{~K} \mathrm{CT} \end{aligned}$	+20	100	43	1900	1	10	4	F
19	43	43	5.7	12	$\begin{aligned} & \text { 400/100 split } \\ & 500 / 125 \text { split } \end{aligned}$	$\begin{aligned} & 40 \mathrm{~K} 10 \mathrm{~K} \text { split } \\ & 50 \mathrm{~K} 12.5 \mathrm{~K} \text { split } \end{aligned}$	+20	100	43	1900	1	10	6	F
20	29	29	5.3	8	$\begin{aligned} & 500 / 125 \text { split } \\ & 600 / 150 \text { split } \\ & \hline \end{aligned}$	$\begin{aligned} & 12.8 / 3.2 \text { split } \\ & 16 / 4 \text { split }^{*} \\ & \hline \end{aligned}$	+20	100	36.2	1.5	6.11	1	6	F
21	11	11	2.6	3.5	$\begin{aligned} & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 60 \end{aligned}$	+20	100	50	5	3.16	1	9	F
22	30	30	2.6	3.5	$\begin{aligned} & 500 / 125 \text { split* } \\ & 600 / 150 \text { split } \end{aligned}$	$\begin{aligned} & \text { 50/12.5 split } \\ & 60 / 15 \text { split } \end{aligned}$	+20	100	36	6.5	3.16	1	6	F
23	19	19	13	10	500 CT	600 CT	+20	100	26	70	1	1.1	13/3	F/C
24	31	31	13	10	500/125 split*	600/150 split*	+20	100	30	42	1	1.1	6	F
25	32	32	Hybrid, 3 eq windings Center Tappe Trifilar		500 600	500 CT 500 CT 600 CT 600 CT	+14	25	50	50 50		$1: 1$	7	F
26	17	17	18	8	$\begin{aligned} & 500 \mathrm{CT} \\ & 60 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 12 \mathrm{~K} \\ & \hline \end{aligned}$	+20	100	95	800	1	4.48	12	F
27	40	40	18	8	$\begin{aligned} & \text { 500/125 split* } \\ & \text { 600/150 split* } \end{aligned}$	$\begin{aligned} & \hline 10 \mathrm{~K} 2.5 \mathrm{~K} \text { split } \\ & 12 \mathrm{~K} 3.0 \mathrm{~K} \text { split } \\ & \hline \end{aligned}$	+20	100	98	1200	1	4.48	6	F
28	19	19	15	10	600 CT	500 CT	+20	100	70	26	1.1	1	13/3	F/C
29	31	31	15	10	600/150 split*	500/125 split*	+20	100	40.3	32.9	1.1	1	6	F
30	33	33	13	10	$600 / 150$ split ${ }^{+} \dagger$	600 CT	+20	100	29	42	1	1	5	F
31	46	46	15	10	600/150 split*	900/225 split ${ }^{*}$	+20	100	43	50	1	1.22	6	F
32	20	20	15	11	600 CT	1500 CT	+20	100	65	70	1	1.58	13/3	F/C
33	35	35	13	5	600/150 split*	2 K 500 split*	+20	100	40	113	1.82	1	6	F
34	27	27	6.8	11	600/150 split	4 KCT	+20	100	47	155	1	2.68	4/10	F/E
35	37	37	8.5	3.2	600/150 split* \dagger	8 KCT	+ 10	50	55	484	1	3.65	5	F
36	7	7	8.5	2.5	$\begin{aligned} & \hline 800 \\ & 1200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20 \mathrm{~K} \\ & 30 \mathrm{~K} \\ & \hline \end{aligned}$	+20	100	110	800	1	5	9	F
37	15	15	8.5	5	$\begin{aligned} & 800 \mathrm{CT} \\ & 1200 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 20 \mathrm{KCT} \\ & 30 \mathrm{KCT} \end{aligned}$	$+20$	100	110	800	1	5	11/3	F/D

\dagger Electrostatic Shield - Bifilar

SSO-P, PC-SSO Sub-Miniature Audio Transformers and Inductors

Input Winding						$300 \mathrm{~Hz}-20 \mathrm{KHz}$ - Working Volts: 175 Peak								
							Maximum	Level	Series $D C R \pm 2$	nnected \% Ohms	Turns	$\pm 3 \%$		Pins Ar-
Line	$\begin{gathered} \text { Type } \\ \text { No. } \\ \text { PC-SSO } \end{gathered}$	$\begin{aligned} & \text { Type } \\ & \text { No. } \\ & \text { SSO-P } \end{aligned}$	Product Millivolt Sec.	$\begin{gathered} \text { DC ma } \\ \text { In } \\ \text { Winding } \end{gathered}$	Input-Matching Impedance Primary (Ohms)	Output-Matching Impedance Secondary (Ohms)	DBM	M.W.	$\begin{aligned} & \text { In } \\ & \text { Pri. } \end{aligned}$	$\begin{aligned} & \text { Out } \\ & \text { Sec. } \end{aligned}$	Pri.	Sec.	Catalog PC/P	Catalog PC/P
38	42	42	8.5	5	$\begin{aligned} & \text { 800/200 split } \\ & 1200 / 300 \text { split } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~K} / 5 \mathrm{~K} \text { split } \\ & 30 \mathrm{~K} 7.5 \mathrm{~K} \text { split } \end{aligned}$	+17	50	110	800	1	5	6	F
39	46	46	18	8	900/225 split ${ }^{\text {* }}$	600/150 split ${ }^{\text {P }}$	+20	100	50	43	1.22	1	6	F
40	12	12	11	3	$\begin{aligned} & 1000 \\ & 1200 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	+20	100	5	90	4.45	1	9	F
41	34	34		6	$\begin{aligned} & \hline 1 \mathrm{~K} 25 \text { split* } \\ & 1200 / 300 \text { split }^{*} \end{aligned}$	$\begin{aligned} & \text { 200/50 split } \\ & 240 / 60 \text { split* } \end{aligned}$	+20	100	102	19	2.23	1	6	F
42	13	13	3.2	0	1000	200K	+7	5	190	4000	1	14.4	9	F
43	21	21	3.2	0	1000 CT	200 KCT	+7	5	200	4000	1	14.4	13/3	F/C
44	45	45	3.25	0	1000/250 splitt	200 KCT	+7	5	200	4000	1	14.4	5	F
45	16	16	22	3	$\begin{aligned} & 1200 \\ & 1500 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 40 \end{aligned}$	+20	100	70		518.1	1	9	F
46	20	20	23	7	1.5 KCT	600 CT	+20	100	70	65	1.58	1	13/3	F/C
47	22	22	32	7	$\begin{aligned} & 1500 \mathrm{CT} \\ & 1800 \mathrm{CT} \end{aligned}$	$\begin{aligned} & 10 \mathrm{KCT} \\ & 12 \mathrm{~K} \mathrm{CT} \end{aligned}$	$+20$	100	300	800	1	2.58	11/3	F/D
48	35	35	25	2.5	2 K 500 split*	600/150 split ${ }^{\text {* }}$	+20	100	113	40	1.82	1	6	F
49	8	8	10	2.2	2 KCT	10 K	+20	100	45	1200	1	2.23	$12 / 2$	F/B
50	27	27	16	2.5	4 KCT	600 split	+20	100	155	47	2.58	1	4/10	F/E
51	36	36	44	2.6	4K/1K split 5 K 125 split	$\begin{aligned} & 12.8 / 3.2 \text { split } \\ & 16 / 4 \text { split* }^{*} \\ & \hline \end{aligned}$	+20	100	327	1.5	17.6	1	6	F
52	38	38	63	2	$\begin{aligned} & \hline 8 \mathrm{~K} 2 \mathrm{~K} \text { split } \\ & 10 / 2.5 \mathrm{~K} \text { split } \end{aligned}$	$\begin{aligned} & 12.8 / 3.2 \text { split* }^{*} \\ & 16 / 4 \text { split }^{\prime} \end{aligned}$	+20	100	600	1.5	25	1	6	F
53	37	37	30	. 6	$8 \mathrm{KCT} \dagger$	600/150 split*	+7	50	484	55	3.65	1	5	F
54	9	9	82	2	10K	16	+20	100	800	2.7	25	1	9	F
55	3	3	55	$\begin{aligned} & \hline 3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 10 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	+20	100	2500	34	7.1	1	9/1	F/A
56	39	39	55	$\begin{aligned} & \hline 3 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 \mathrm{~K} 2.5 \mathrm{~K} \text { split } \\ & 25 \mathrm{~K} 6.25 \mathrm{~K} \text { split } \end{aligned}$	$\begin{aligned} & \text { 200/50 split } \\ & 500 / 125 \text { split } \end{aligned}$	+20	100	2500	34	7.1	1	6	F
57	14	14	33	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \mathrm{KCT} \\ & 25 \mathrm{KCT} \end{aligned}$	$\begin{aligned} & 200 \mathrm{CT} \\ & 500 \mathrm{CT} \end{aligned}$	+20	100	560	22	7.07	1	13/3	F/C
58	17	17	82	2	$\begin{aligned} & 10 \mathrm{~K} \\ & 12 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 500 \mathrm{CT} \\ & 600 \mathrm{CT} \end{aligned}$	+20	100	800	95	4.48	1	12	F
59	40	40	82	4	$\begin{aligned} & 10 \mathrm{~K} / 2.5 \text { split } \\ & 12 \mathrm{~K} / 3.0 \mathrm{~K} \text { split } \end{aligned}$	$\begin{aligned} & \text { 500/125 split } \\ & 600 / 150 \text { split } \end{aligned}$	+20	100	1200	98	4.48	1	6	F
60	8	8	23	1	10 K	2 KCT	+20	100	1200	45	2.23	1	$12 / 2$	F/B
61	22	22	82	4	$\begin{aligned} & \hline 10 \mathrm{~K} \mathrm{CT} \\ & 12 \mathrm{~K} \mathrm{CT} \end{aligned}$	$\begin{aligned} & 1500 \mathrm{CT} \\ & 1800 \mathrm{CT} \end{aligned}$	+20	100	800	300	2.58	1	11/3	F/D
62	25	25	60	1	$\begin{aligned} & 10 \mathrm{KCT} \\ & 12 \mathrm{~K} \mathrm{CT} \end{aligned}$	10 K split 12 K split	+20	100	560	650	1	1	4/10	F/E
63	41	41	60	1	$\begin{aligned} & 10 \mathrm{~K} / 2.5 \mathrm{~K} \text { split } \\ & 12 \mathrm{~K} 3.0 \mathrm{~K} \text { split } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~K} / 2.5 \mathrm{~K} \text { split } \\ & 12 \mathrm{~K} 3.0 \mathrm{~K} \text { split } \end{aligned}$	+20	100	560	650	1	1	6	F
64	2	2	13	. 25	10K	90 K	+15	30	710	3150	1	3	9	F
65	7	7	42	. 5	$\begin{aligned} & 20 \mathrm{~K} \\ & 30 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 800 \\ & 1200 \\ & \hline \end{aligned}$	+20	100	800	110	5	1	9	F
66	15	15	42	1	$\begin{aligned} & \text { 20K CT } \\ & 30 \mathrm{KCT} \end{aligned}$	$\begin{aligned} & 800 \mathrm{CT} \\ & 1200 \mathrm{CT} \end{aligned}$	+20	100	800	110	5	1	11/3	F/D
67	42	42	42	1	$\begin{aligned} & 20 \mathrm{~K} / 5 \mathrm{~K} \text { split } \\ & 30 \mathrm{~K} 7.5 \mathrm{~K} \text { split } \end{aligned}$	$\begin{aligned} & \hline 800 / 200 \text { split } \\ & 1200 / 300 \text { split } \end{aligned}$	+17	50	800	110	5	1	6	F
68	4	4	64	1	30K	50	+20	100	2875	4.6	24.5	1	9	F
69	26	26	57	. 5	$\begin{aligned} & \hline 40 \mathrm{KCT} \\ & 50 \mathrm{KCT} \end{aligned}$	$\begin{aligned} & \hline 400 / 100 \text { split } \\ & 500 / 125 \text { split } \end{aligned}$	+20	100	1900	43	10	1	4	F
70	43	43	57	. 5	40K/10K split 50 K 12.5 K split	$\begin{aligned} & \hline 400 / 100 \text { split } \\ & 500 / 125 \text { split } \end{aligned}$	+20	100	1900	43	10	1	6	F
71	2	2	38		90K	10 K	+15	30	3150	710	3	1	9	F
72	6	6	79	. 5	100K	60	+20	100	3500	3.3	40	1	9	F
73	44	44	40	0	$\begin{aligned} & 100 \mathrm{KCT} \dagger \\ & 200 \mathrm{KCT} \dagger \end{aligned}$	$\begin{aligned} & \hline 100 / 25 \text { split } \\ & 200 / 50 \text { split } \end{aligned}$	+7	5	3290	4.1	31.6	1	5	F
74	13	13	48	0	200 K	1000	+7	5	4000	190	1	14.4	9	F
75	21	21	48	0	200 KCT	1 KCT	+7	5	4000	200	14.1	1	13/3	F/C
76	45	45	48	0	$200 \mathrm{KCT} \dagger$	1K/250 split	+7	5	4000	200	14.4	1	5	F

\dagger Electrostatic Shield \quad Bifilar Magnetic Shields on Catalog page 24
United Transformer Company/OPT • 300 Red School Lane, Phillipsburg, NJ 08865 • (201) 454-2600 • FAX (201) 454-3172

Key	
SSO	Line
2	64,71
3	15,55
4	10,68
6	11,72
7	36,65
8	49,60
9	6,54
10	2
11	7,21
12	9,40
13	42,74
14	16,57
15	37,66
16	1,45
17	26,58
19	23,28
20	32,46
21	43,75
22	47,61
25	62
26	18,69
27	34,50
28	12,20
29	3,20
30	8,22
31	24,29
32	25
33	30
34	14,41
35	33,48
36	4,51
37	35,53
38	5,52
39	17,56
40	27,59
41	63
42	38,67
43	19,70
44	13,73
45	44,76
46	31,39

See page 24 for

- Inductors
- Schematics
- Pin Diagrams
- Outline Drawings

SSO-P, PC-SSO
 Sub-Miniature Audio Transformers and Inductors

PIN DIAGRAMS (Pins not used are removed. These are indicated by " x.")

Fig. A

Fig. B

Fig. C

Fig. D

Fig. E

Fig. F^{\dagger}

Fig. 1

Fig. 6

Fig. 11

Fig. 3

Fig. 8

Fig. 13

Fig. 4 HIz $2 \| e^{-6}$

Fig. 9

Fig. 14

Fig. 5

$$
{ }^{1}-2 \varepsilon^{4}
$$

Fig. 10

Fig. 15

SHIELDS-DRAWN HIPERMALLOY SHIELD PROVIDES 20 db SHIELDING

| PC-SSO-SH | $0.843 \mathrm{Sq} \times 0.500 \mathrm{H}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SSO-P-SH | $1.000 \mathrm{~L} \times 0.812 \mathrm{~W} \times 0.593 \mathrm{H}$ | | |

MIL-PART NUMBER DESIGNATIONS

Type №.	Part No.	Type No .	Part No.	Type №.	Part No.	Type №.	Part No.	Type No .	Part No.
SSO-1P	M27/167-02	SSS-10P	M27/167-20	SSO-19P	M27/167-07	SS0-28P	M27/167-03	SSO-37P	M27/167-12
SSO-2P	M27/167-32	SSO-11P	M27/167-05	SSO-20P	M27/167-17	SSO-29P	M27/167-04	SSO-38P	M27/167-21
SSO-3P	M27/167-01	SSO-12P	M27/167-14	SSO-21P	M27/167-41	SSO-30P	M27/167-06	SSO-39P	M27/167-24
SSO-4P	M27/167-35	SSO-13P	M27/167-40	SSO-22P	M27/167-29	SS0-31P	M27/167-08	SSO-40P	M27/167-27
SSO-5P	TF5R20ZZ	SSO-14P	M27/167-25	SSO-23P	TF5R20ZZ	SSO-32P	M27/167-11	SSO-41P	M27/167-31
SSO-6P	M27/167-38	SSO-15P	M27/167-34	SSO-24P	TF5R20ZZ	SSO-33P	M27/167-09	SSO-42P	M27/167-13
SSO-7P	M27/167-33	SSO-16P	M27/167-16	SSO-25P	M27/167-30	SSO-34P	M27/167-15	SSO-43P	M27/167-37
SSO-8P	M27/167-28	SS0-17P	M27/167-26	SSO-26P	M27/167-36	SSO-35P	M27/167-10	SSO-44P	M27/167-39
SSO-9P	M27/167-22	SSO-18P	M27/167-23	SSO-27P	M27/167-18	SSO-36P	M27/167-19	SSO-45P	M27/167-42

[^5]
GENERAL INFORMATION Power Transformers and Inductors

POWER TRANSFORMERS

A power transformer transforms voltage and currents to higher or lower magnitudes with the purpose of converting prime supply voltages to specific application requirements.
UTC manufactures a wide variety of power transformers for military, space, industrial and commercial application.

FUNDAMENTALS

The simplest transformer consists of two windings.

The primary winding is connected to the alternating current voltage source and the secondary winding is connected to the load.

The physical law governing induction in the windings is: $e=N \frac{d \sigma}{d t} \times 10^{-8}$

This law can be stated: The voltage induced in a coil is proportional to the number of turns and to the time rate of change of magnetic flux in the coil.

In a power transformer the flux links between coil windings is almost perfect, consequently
$\frac{e_{1}}{e_{2}}=\frac{N_{1}}{N_{2}}$
where e, is the source of voltage and e_{2} is the output voltage,
$\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$ is the turns ratio.

EQUIVALENT CIRCUIT

For simplicity of analysis a transformer with a $\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=1$ is shown. This model can be extended to other turns ratios by the use of scaling factor $\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2}$

$\mathbf{R}_{\mathrm{p}}=$ Primary winding DC resistance.
$\mathrm{R}_{\mathrm{s}}=$ Secondary winding DC resistance.
$X_{n}=$ Represents an inductive reactance that causes a current to flow which produces the flux in the transformer magnetic core.
$\mathbf{R}_{\mathrm{c}}=$ Is a resistance that represents the losses in the magnetic core of the transformer. These loses are of two types: hysteresis and eddy currents. Hysteresis refers to losses due to movement of the core molecules. Eddy currents are the currents induced in the core due to core material conductivity.
$\mathrm{X}_{\mathrm{L}}=$ Represents an inductive reactance caused by the magnetic flux that does not couple both coils. It is shown as an inductance and is the result of imperfect coupling. This parameter is called leakage inductance.
$\mathbf{R}_{\mathrm{L}}=$ Load resistance represents the device that is being powered by the transformer and constitutes useful power.
$E_{p}=$ Input Voltage.
$I_{\mathrm{p}}=$ Input Current.
$I_{M}=$ Current due to X_{n} and R_{c} called magnetization of exciting current.
$\mathrm{E}_{\mathrm{L}}=$ Load Voltage.
$I_{L}=$ Load Current.

VECTOR DIAGRAM

The diagram below shows the result of the transformer parameters considered in the equivalent circuit and their terminology.

Although we assumed a $\frac{N_{1}}{N_{2}}=1$ transformer E_{L} is smaller than E_{p} due to voltage drops $I_{L} R_{S}, I_{P} R_{p}$ and $l_{L} X_{L}$. In the unloaded transformer I_{L} would not exist and I_{p} would equal I_{s}, which normally is small compared to I_{L}. Consequently,

GENERAL INFORMATION Power Transformers and Inductors

$\frac{E_{p}}{E_{L}}=\frac{N_{1}}{N_{2}}$ very closely.

1. Percent regulation $=100 \frac{\left(E_{\mathrm{NL}}-E_{L}\right)}{E_{\mathrm{L}} \text { Loaded }}$
2. Power Factor $=\frac{\text { Output power plus losses }}{\text { Imput volt-amps }}$ and is numerically equal to cosine \varnothing.
3. Efficiency $=\frac{\text { Output power }}{\text { Output power plus losses }}$
4. Phase Shift between E_{L} and E_{p} sine wave shown as angle θ. Actual losses which show up as heat in the transformer and cause a temperature rise show up in the diagram at the following points:
5. Core loss $=I_{M}^{2} R_{c}$
6. Primary winding losses $=1_{\rho}^{2} R_{p}$
7. Secondary winding losses $=I_{L}^{2} R_{S}$

Total losses is the sum of these losses.

POWER INDUCTORS

An inductor is used to impede the flow of AC current. They offer a high impedance to alternating currents but allow DC current to flow.

The principal purpose of these inductors is to reduce the AC ripple in rectifier power supplies in conjunction with capacitors. They are specified by inductance and DC current capability.

HERMETIC POWER COMPONENTS

HIGHEST INDUSTRIAL AND MILITARY RELIABILITY
UTC hermetic power components have found wide acceptance for industrial electronics equipment where the highest reliability is important. The insulation operating temperature (ambient temperature plus transformer's temperature rise) in a transformer considerably controls its life and reliability.

For military application ambient is based on $65^{\circ} \mathrm{C}$, for Class R units. This allows a $40^{\circ} \mathrm{C}$ rise for the maximum final temperature of $105^{\circ} \mathrm{C}$ prescribed for Class R units in MIL-T-27

Most of the power components offered are rated for Class S . These units are allowed a maximum final temperature of $130^{\circ} \mathrm{C}$. MIL-T-27 allows the use of a
higher temperature class unit for a lower temperature application. Therefore, a Class S unit may be used in a Class R application. Class S units are equally as reliable as Class R temperatures.

Industrial applications ambients are appreciably lower. As a result, the temperature rise can be approximately $15^{\circ} \mathrm{C}$ higher $\left(40^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$ rise), still providing the same overall life and reliability. This results in the ability to operate the same components at somewhat greater ratings.

The listing for $A C$ and $D C$ voltages and rated currents for our MET and H Series on pages 40 and 41 and the MET Series on page 42 is given for both MIL-T-27 and Industrial Service, the latter in bold type.

These units exceed MIL-T-27 requirements in many respects. The insulations employed have exceptional safety factors. The use of special core materials provides high efficiency and small size. The transformer regulation has been a fundamental design consideration in all units to provide for diverse applications in which they may be employed.

UTC has expanded its presentation of components designed for switch mode application. The components listed on pages 28 thru 38 consist of inverter transformers, gate drive transformers and an array of high frequency inductors of great variety in current and power range.

Our commitment is to continually expand this product line as the industry applications require.

We offer our full engineering assistance to develop your special requirements that cannot be served by the products offered.

SPECIAL DESIGNS

In addition to the needs met by UTC stock power components, there are many unique applications which require special units. These custom designs, produced to customer specifications, range from milliwatts to 100 KVA capacity. They comprise temperature ranges from Class R $\left(105^{\circ} \mathrm{C}\right.$) to Class U (higher than $170^{\circ} \mathrm{C}$). All types of mechanical and electrical configurations are available. Special engineering emphasis is placed on customer requirement.

Our engineering and laboratory facilities are uniquely equipped to handle customer problems in tough design areas such as shielding, corona, reliability, high voltage, miniaturization, etc.

SELECTION GUIDE Standard Power Transformers and Inductors

ALL PRODUCTS MILITARY TYPES

SWITCH MODE COMPONENTS

Product Series	Description	$\begin{gathered} \text { MIL } \\ \text { Grade } \end{gathered}$	Size	Weight		Current Rating	Power Range	Page
GDT	Gate drive transformer, encapsulated, plug-in	5	See Page 29	1.2	oz.	1.5A	-	29
$\begin{aligned} & \text { CMA } \\ & \text { CMB } \\ & \text { CMC } \end{aligned}$	Common Mode Inductors, encapsulated, plug-in		$\begin{array}{r} .811 \times .500 \mathrm{H} \\ .956 \times .625 \mathrm{H} \\ 1.142 \times .728 \mathrm{H} \end{array}$.033 lbs . .052 lbs . .09 lbs		1.1 to 2.4A RMS 2.0 to 4.4 A RMS 2.2 to 4.8A RMS	S 1 to 9 mHy S 1 to 9 mHy S 3 to 16 mHy	36
CSL	Current Sense Inductors, encapsulated, plug-in		$.670 \times .375 \times .785$. 2	oz.	8 V per A -	-	30
LL	Axially Leaded Miniature Power Inductors		. 49×3650	4.5	gr.	. 25 to 3ADC	30 HH to $5000 \mu \mathrm{H}$	31
RML-100 RML-200 RML-300 RML-400	Power Inductors, molded wide range of inductances and current ratings	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} .698 \mathrm{D} \times 1.04 \mathrm{H} \\ .83 \mathrm{D} \times 1.04 \mathrm{H} \\ 1.095 \mathrm{D} \times 1.04 \mathrm{H} \\ 1.515 \mathrm{D} \times 1.32 \mathrm{H} \end{array}$	$\begin{aligned} & .05 \\ & .08 \\ & .15 \\ & .40 \end{aligned}$		$\begin{aligned} & \text { 2.0 t t } 11.4 \mathrm{ADC} \\ & 1.4 \text { t } 11.3 \mathrm{ADC} \\ & 1.4 \text { to } 8.4 \mathrm{ADC} \\ & 1.5 \text { to } 9.0 \mathrm{ADC} \end{aligned}$	18 to 560 uhy 22 to 1500 Hhy 78 to 3600 Hy 250 to 9600 hy	32, 33
WindingsSingle Double								
$\begin{aligned} & \text { SRA } \\ & \text { SRB } \\ & \text { SRC } \end{aligned}$	Low inductance, Hi Current miniature molded plug-in Inductors	5	$.875 \times .438 \mathrm{H}$ $1.188 \times .563 \mathrm{H}$ $1.375 \times .750 \mathrm{H}$.813 H	$\begin{array}{r} .6 \\ 1.5 \\ 3 \end{array}$	$\begin{aligned} & 0 z . \\ & 02 . \\ & o z . \end{aligned}$	1.2 to 15ADC 1.2 to 15ADC 1.1 to 13.6ADC	$\begin{aligned} & 8 \mu \text { to } 1250 \mu \mathrm{~h} \\ & 20 \mu \text { to } 3000 \mu \mathrm{~h} \\ & 60 \mu \text { to } 10000 \mu \mathrm{~h} \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \\ & 35 \end{aligned}$
SRD	Wide Inductance Range, Hi Current molded	5	$2.395 \times 1.500 \mathrm{H}$	14	$0 z$.	. 125 to 13ADC 5	500 Hh to 5.6 h	35
PS	Inverter Transformers, encapsulated, plug-in		$\begin{array}{r} .750 \times .470 \mathrm{H} \\ .900 \times .525 \mathrm{H} \\ 1.00 \times .650 \mathrm{H} \end{array}$	$\begin{aligned} & 10 \\ & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{gr.} \\ & \mathrm{gr} \\ & \mathrm{gr} . \end{aligned}$	$50-100 \mathrm{KHz}$	16 to 60 W	28

LINEAR POWER COMPONENTS

Product Series	Description	$\begin{gathered} \text { MIL } \\ \text { Grade } \end{gathered}$	Size	Weight	Operating Frequency	Power Range	Page
DOT	Metal clad Flexible lead miniature power transformers	5	. $312 \times .406 \mathrm{D}$	0.1 oz .	380 Hz to 2400 Hz	400 mW	42
FP	Low Profile Power Transformers' 115V. Pri., Secondaries deliver 2 to 30 Volts	5	$\begin{aligned} & 1.24 \text { sq. } \times .62 \mathrm{H} \\ & 1.75 \text { sq. } \times .62 \mathrm{H} \\ & 2.25 \text { sq. } \times .62 \mathrm{H} \end{aligned}$	$\begin{aligned} & .125 \mathrm{lbs} \\ & .25 \mathrm{lbs} \\ & .38 \mathrm{lbs} \end{aligned}$	400 Hz	$\begin{gathered} \text { 10W to } \\ 30 \mathrm{~W} \end{gathered}$	39
H	Metal clad Hermetically sealed to MIL-T-27 115V Pri. Universal Transistor Supply Transformers	4	See MIL Case Size Page 40	$\begin{aligned} & .375 \mathrm{lbs} \\ & \text { to } \\ & 21 \text { tobs. } \end{aligned}$	60 Hz	$\begin{aligned} & .78 \mathrm{VA} \text { to } \\ & \text { 400VA } \end{aligned}$	40,41
H	Molded transformers	5	See Page 42	$\begin{aligned} & .02 \mathrm{to} \\ & 1.5 \mathrm{lbs} . \end{aligned}$	400 Hz	1W to .57W	42
MET 445-495	Metal clad Hermetically sealed to MIL-T-27 115V Pri. Universal Transistor Supply Transformers	4	See MIL Case Size Page 40	$\begin{aligned} & .375 \mathrm{lbs} \\ & \text { to } \\ & 4.5 \mathrm{lbs} . \end{aligned}$	400 Hz	$\begin{aligned} & \text { 7VA to } \\ & \text { 170VA } \end{aligned}$	40,41
MET 400, 405, 420	Metal clad Hermetically sealed to MIL-T-27 115V Pri. Universal Transistor Supply Transformers	4	See MIL Case Size Page 40	$\begin{aligned} & .375 \mathrm{lbs} \text { to } \\ & 1.75 \mathrm{lbs} . \end{aligned}$	$380-1 \mathrm{KHz}$	3.8 VA to 46VA	42
MET 430	Metal clad Hermetically sealed to MIL-T-27 115 V Pri. Universal Transistor Supply Transformers	4	FA	1.75 lbs .	400 Hz	51VA	42

Inverter Transformers

NOTES

Freq. Range: $50-100 \mathrm{KHz}$
P.C. mounting style. Largest unit features insert for sturdiness
MIL-Type TF5V03YY, Class V environment
$D W V=100 \mathrm{~V}$ RMS
Can be used for both MOSFET and bi-polar drives
Magnetically shielded
DC to DC efficiency of 75-80\%, including all semiconductor and rectifier losses.
Multiple benefits: hi-frequency, hi-power, hi-efficiency.

APPLICATION

Transformers for inverter circuits to provide common output feed voltages and currents. Can be used for both MOSFET and bi-polar drive circuits. $50 \mathrm{KHz}-100 \mathrm{KHz}$ parts providing high power and high efficiency in small sizes. DC to DC efficiency of 75 to 80% including semiconductor and rectifier losses.

PACKAGING

MIL-T-27 TF5V03YY types. Grade 5 units for up to Class $\mathrm{V}\left(155^{\circ} \mathrm{C}\right)$ operating temperatures.

CONSTRUCTION

PC mounting styles. Largest unit features insert mounting for sturdiness. Parts are magnetically shielded.

PS INVERTER TRANSFORMER

Part Number	Output/W	S1 DC Output	S2 DC Output	Size
PS-300	16	$\pm 12 \mathrm{~V} @ 0.25 \mathrm{~A}$	+5 V @ 2 A	$.750^{\prime \prime} \mathrm{D} \times .470^{\prime \prime} \mathrm{H}$
PS-310	16	$\pm 15 \mathrm{~V} @ 0.20 \mathrm{~A}$	+5 V @ 2 A	$.750^{\prime \prime} \mathrm{D} \times .470^{\prime \prime} \mathrm{H}$
PS-400	38	$\pm 12 \mathrm{~V} @ 0.75 \mathrm{~A}$	$+5 \mathrm{~V} @ 4 \mathrm{~A}$	$.900^{\prime \prime} \mathrm{D} \times .525^{\prime \prime} \mathrm{H}$
PS-410	38	$\pm 15 \mathrm{~V} @ 0.60 \mathrm{~A}$	$+5 \mathrm{~V} @ 4 \mathrm{~A}$	$.900^{\prime \prime} \mathrm{D} \times .525^{\prime \prime} \mathrm{H}$
PS-500	60	$\pm 12 \mathrm{~V} @ 1.25 \mathrm{~A}$	$+5 \mathrm{~V} @ 6 \mathrm{~A}$	$1.000^{\prime \prime} \mathrm{D} \times .650^{\prime \prime} \mathrm{H}$
PS-510	60	$\pm 15 \mathrm{~V}$ @ 1.0 A	$+5 \mathrm{~V} @ 6 \mathrm{~A}$	$1.000^{\prime \prime} \mathrm{D} \times .650^{\prime \prime} \mathrm{H}$

ELECTRICAL SPECIFICATIONS AT $25^{\circ} \mathrm{C}$

Part Number	$\begin{gathered} \text { Case } \\ \text { Fig. } \\ \hline \end{gathered}$	Schematic Fig.	$\begin{aligned} & \text { Turns Ratio } \pm 5 \% \\ & \text { N1:N2:N3 } \end{aligned}$	Pri. Ind., N1 mH Min. at IV, 1 kHz ($1 / 2$ of winding)	Leakage Ind. $\mathrm{N} 3 \mu \mathrm{H}$ Max. Short N1	dc Resistance Ohms Max.		
						N1	N2	N3
GDT-100	1	1	15:15:5	1.25	. 85	. 80	. 70	. 055
GDT-200	1	2	15:15:5	1.25	. 85	. 80	. 70	. 055
GDT-300	1	1	30:15:5	5.00	. 85	1.60	. 70	. 055
GDT-400	1	2	30:15:5	5.00	. 85	1.60	. 70	. 055
GDT-500	2	3	30:19	5.00	1.2	. 29	. 21	
GDT-600	3	4	14:14	. 40	1.5	. 07	. 12	
GDT-700	4	5	14:14	. 50	1.0	. 08	. 08	

SCHEMATICS

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5
$\mathrm{N}_{1}=$ PRIMARY END TO C.T.
$\mathrm{N}_{2}=$ CLAMP END TO C.T. (FIGS. 1, 2)
INDIVIDUAL SECONDARIES (FIGS. 3, 4, 5)
$\mathrm{N}_{3}=$ INDIVIDUAL SECONDARIES (FIGS. 1, 2)

DIELECTRIC STRENGTH:
2500 V RMS PRI. TO ANY SECONDARY,
1500 V RMS BETWEEN SECONDARIES,
500 V RMS PRI. TO CLAMP AND
2500 V RMS CLAMP TO ANY SECONDARY.
3750 V RMS ON SPECIAL ORDER

CASE DIMENSIONS

FIGURES 2, 3, 4

PIN	a	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}
GDT-500	1	2				3	4	5			
GDT-600	1	2			3	4		5	6		
GDT-700	1	2	3	4	5	6		7	8	9	10

CSL

Current Sense Inductors

CSL FEATURES

NOTES

- Designed for switching power supply applications. Push, pull, half bridge, full bridge.
- Molded construction. Void free.
- Meets MIL-T-27, TF5S36ZZ.
- Frequency range 50 KHz and above. To 8 volts per amp.
- 0.02 in. minimum material thickness from hole I.D. to coil.
- Dielectric strength 2500 volts RMS minimum, primary to secondary.

ELECTRICAL SPECIFICATIONS AT $25^{\circ} \mathrm{C}$

Part Number	Schematic Figure	Turns $\pm \%$	Inductance (Term $1-3)$ mH Min.	Inductance Test Volts 15.75 kHz	DC Resistance (1-3) Ohms Max.	Rated* Terminating Resistance, (Ω)
CSL-005	1	50	5.0	0.50	0.70	50
CSL-020	1	100	20.0	1.00	1.40	100
CSL-080	1	200	80.0	2.00	4.50	200
CSL-105	2	50 C.T.	5.0	0.50	0.70	50
CSL-120	2	100 C.T.	20.0	1.00	1.40	100
CSL-180	2	200 C.T.	80.0	2.00	4.50	200
		$(1-2,3-4)$	$(1-2,3-4)$	$(1-2,3-4)$	$(1-2,3-4)$	$(1-2,3-4)$
CSL-205	3	50	5.0	0.50	0.70	50
CSL-220	3	100	20.0	1.00	1.40	100

Other turns ratios available on special order.

SCHEMATICS

Fig. 1

Fig. 2
$\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 0\end{array}$

Fig. 3

SCALE FACTOR

The scale factor is proportional to terminating resistance as shown in the following table.

CASE DIMENSIONS

Miniature Power Inductors

APPLICATIONS

Intended primarily for switching regulator and power filtering applications, LL inductors can be installed either through PC boards or to wiring posts. Their small size - . 365 in . diameter by .49 in . length - makes them ideal for use with multi-layer boards. An axial lead configuration permits customer pre-mounting on reels, for machine insertion with other components. Other inductance values are available on special order.

PERFORMANCE

LL inductors provide unprecedented power-handling capacity and reliability coupled with small size. For example, drop in rated inductance at rated DC current will not exceed 20%, while temperature rise at rated DC current is approximately $40^{\circ} \mathrm{C}$. The units feature low DC resistance for a given inductance, having ohms/milihenry values of about 1.0.

PACKAGING

Hermetically sealed case to meet MIL-T-27. The .032-in. tinned, oxygen-free copper leads are rigidly anchored in secure fashion.

Part Number	Inductance at $1 \mathrm{NV}, 20$ $(\mu \mathrm{H})$	Max. DCR (ohms)	Rated Current (amps)	MIL Part No.
LL-30	30	.035	3.0	M27/286-07
LL-50	50	.056	2.5	M27/286-08
LL-120	120	0.14	1.6	M27/286-01
LL-300	300	0.35	1.0	M27/286-02
LL-500	500	0.56	0.75	M27/286-03
LL-1200	1200	1.40	0.50	M27/286-04
LL-3000	3000	3.50	0.30	M27/286-05
LL-5000	5000	5.60	0.25	M27/286-06

NOTES

Mountable through PC board or to posts
Inductance from 30 to $5000 \mu \mathrm{H}$
Rated current range: 3.0 to 0.25 A

Low inductance drop at rated current
Less than . 375 inch in diameter
Suitable for reel-mounted assembly
Manufactured to meet MIL-T-27
MIL Type No. TF5R04ZZ

Hi Frequency Power Inductors

The new RML line of shielded inductors consists of 4 series of power chokes differing in size and power capability, covering a wide range of inductance and current.

These units are useful over a wide frequency range, the lower inductance values up to the megahertz range, while the highest inductance values easily run to the 100 kilohertz range.

These RML inductors are hermetically sealed in molded cases, and are manufactured to meet MILT 27, Grade 5, Class S specifications (TF5S04ZZ).

Principal applications are switching regulators, power supplies and EMI supression filters.

Current ratings are based on $45^{\circ} \mathrm{C}$ heat rise and 10% drop in inductance.

Inductance test conditions are $.1 \mathrm{~V}, 10 \mathrm{KHz}, 0 \mathrm{DC}$.
Hipot is 1000 V RMS, wdg to insert.
Type numbers correspond to inductance values in microhenries, with an inductance tolerance of $\pm 15 \%$.

Part No.	Ind μ Hy ODC	Max DCR Ohms	DC Rated Current Amps
RML-100-18	18	.010	11.4
RML-100-25	25	.015	9.3
RML-100-39	39	.020	7.7
RML-100-56	56	.040	5.9
RML-100-82	82	.060	4.8
RML-100-120	120	.072	4.3
RML-100-180	180	.095	3.4
RML-100-250	250	.17	2.7
RML-100-390	390	.21	2.4
RML-100-560	560	.30	2.0

Part No.	Ind μ Hy ODC	Max DCR Ohms	DC Rated Current Amps
RML-200-22	22	.010	11.3
RML-200-33	33	.018	8.4
RML-200-50	50	.026	7.0
RML-200-75	75	.030	6.5
RML-200-100	100	.039	5.7
RML-200-150	150	.060	4.6
RML-200-220	220	.090	3.7
RML-200-330	330	.11	3.4
RML-200-500	500	.21	2.4
RML-200-750	750	.32	2.0
RML-200-1000	1000	.39	1.8
RML-200-1500	1500	.59	1.4

RML

Hi Frequency Power Inductors

	A	B	C	D	E
PART	Max	Max	$\pm .010$	8 THD NUMBER Dia.	
NC-2B	Dia. $\pm .003$				
RML-100	.698	1.041	.450	$4-40$.040
RML-200	.830	1.041	.500	$4-40$.040
RML-300	1.095	1.041	.538	$4-40$.040
RML-400	1.515	1.322	.750	$6-32$.080

Part No.	Ind $\mu \mathrm{Hy}$ ODC	Max DCR Ohms	DC Rated Current Amps
RML-300-78	78	. 024	8.4
RML-300-110	110	. 029	7.5
RML-300-165	165	. 034	7.0
RML-300-250	250	. 064	5.0
RML-300-360	360	. 080	4.4
RML-300-550	550	. 122	3.7
RML-300-780	780	. 187	3.0
RML-300-1110	1110	. 256	2.6
RML-300-1650	1650	. 426	2.0
RML-300-2500	2500	. 518	1.75
RML-300-3600	3600	. 900	1.4
Part No.	Ind $\mu \mathrm{Hy}$ ODC	Max DCR Ohms	DC Rated Current Amps
RML-400-250	250	. 045	9.0
RML-400-390	390	. 056	8.1
RML-400-560	560	. 082	6.3
RML-400-800	800	. 125	5.1
RML-400-1200	1200	. 154	4.7
RML-400-1800	1800	. 232	3.7
RML-400-2500	2500	. 360	3.0
RML-400-3900	3900	. 555	2.4
RML-400-5600	5600	. 845	2.1
RML-400-6800	6800	1.14	1.9
RML-400-8000	8000	1.60	1.6
RML-400-9600	9600	1.76	1.5

SRA and SRB
 Switching Power Inductors

NOTES

PACKAGING

Hermetically sealed, molded case.
MIL SPECS
To complete MIL-T-27 specs. Type number TF5S04ZZ.

APPLICATION

These inductors have low losses in the 3 to 100 KHz frequency range, making them ideal for switching regulator and AC filter choke applications.
INDUCTANCE
Type numbers correspond to inductance values in microhenries, which are measured at $1 \mathrm{~V}, 10 \mathrm{KHz}, 0 \mathrm{DC}$ with an inductance tolerance of $+15 \%,-5 \%$. Values of inductance other than listed in an existing size are available. Part Number would be: SR (A, B, or C) - (inductance in microhy at 0 DC).

CURRENT RATINGS

Listing I, is for approximately 10% drop in inductance with a typical $20^{\circ} \mathrm{C}$ temperature rise, and Listing I_{2} is for approximately 20% drop in inductance with a typical $40^{\circ} \mathrm{C}$ temperature rise.

DIMENSIONS IN INCHES

Type Winding	$\begin{gathered} \text { A } \\ \text { dia. } \\ \pm .030 \end{gathered}$	B $\pm .063$	C $\pm .030$	$\begin{gathered} \text { D } \\ \text { dia. } \\ \pm 0.10 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{E} \\ \text { dia. } \\ \pm .005 \end{gathered}$	$\begin{gathered} \text { F } \\ \text { dia. } \\ \pm .015 \end{gathered}$	$\begin{gathered} \text { G } \\ +.010 \\ \hline \end{gathered}$	H ± 010	J $\pm .010$	$\begin{gathered} \text { K } \\ \text { C'bore } \\ \pm .015 \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \pm .010 \\ \hline \end{gathered}$	$\begin{gathered} \text { Wt. } \\ 0 \mathrm{Oz} \end{gathered}$
SRA Single	. 875	. 438	. 250	. 156	. 073	. 281	. 400	. 200	-	. 082	-	. 6
Double		. 563							. 200		. 200	
SRB Single	1.188	. 563	. 250	. 156	. 073	. 281	. 600	. 300	-	. 082	-	1.5
Double		. 688							. 400		. 300	
SRC Single	1.375	. 750	. 250	. 156	. 073	. 281	. 800	. 300	-	. 082	-	3
Double		. 813							400		. 500	

SRA

Type	No. of Windings	Inductance at 0 DC ($\mu \mathrm{H}$)	h_{1} at 10% drop in L (amps)	l2, at 20\% drop in L (amps)	Max. DCR (ohms)	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$
SRA-1250	1	1250	. 8	1.2	. 7	M27/287-01
SRA-800	1	800	1	1.5	. 45	M27/287-02
SRA-500	1	500	1.2	1.8	. 3	M27/287-03
SRA-350	1	350	1.5	2.2	. 2	M27/287-04
SRA-200*	2	$\begin{aligned} & 200 \text { (SER) } \\ & 50 \text { (PAR) } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 6 \end{aligned}$	$\begin{aligned} & .12 \\ & .03 \end{aligned}$	M27/287-05
SRA-88*	2	$\begin{aligned} & 88 \text { (SER) } \\ & 22 \text { (PAR) } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 6 \\ & \hline \end{aligned}$	4.5	$\begin{aligned} & .052 \\ & .013 \\ & \hline \end{aligned}$	M27/287-06
SRA-32*	2	$\begin{aligned} & 32 \text { (SER) } \\ & 8 \text { (PAR) } \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{gathered} 7.5 \\ 15 \end{gathered}$	$\begin{aligned} & \hline .02 \\ & .005 \\ & \hline \end{aligned}$	M27/287-07

SRB

Type	No. of Windings	Inductance at 0 DC ($\mu \mathrm{H}$)	h, at 10% drop in L (amps)	l2, at 20\% drop in L (amps)	$\begin{gathered} \text { Max. DCR } \\ \text { (ohms) } \end{gathered}$	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$
SRB-3000	1	3000	. 8	1.2	1.2	M27/288-01
SRB-2000	1	2000	1	1.5	. 8	M27/288-02
SRB-1200	1	1200	1.25	1.88	. 5	M27/288-03
SRB-780	1	780	1.6	2.4	. 3	M27/288-04
SRB-520	1	520	2	3	. 2	M27/288-05
SRB-320	1	320	2.5	3.75	13	M27/288-06
SRB-220*	2	$\begin{aligned} & 220(\mathrm{SER}) \\ & 55 \text { (PAR) } \end{aligned}$	3	4.5	$\begin{aligned} & .08 \\ & .02 \\ & \hline \end{aligned}$	M27/288-07
SRB-120*	2	$\begin{aligned} & 120 \text { (SER) } \\ & 30 \text { (PAR) } \end{aligned}$	4	$\begin{array}{r} 6 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & .05 \\ & .013 \end{aligned}$	M27/288-08
SRB-80*	2	$\begin{aligned} & 80 \text { (SER) } \\ & 20 \text { (PAR) } \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	7.5	$\begin{aligned} & .032 \\ & .008 \end{aligned}$	M27/288-09

* Two identical windings brought out to four terminals permit series, parallel, center tapped
or transformer connections.

SRC and SRD Switching Power Inductors

SRC

Type	No. of Windings	$\begin{gathered} \text { Inductance } \\ \text { at 0 DC } \\ (\mu \mathrm{H}) \\ \hline \end{gathered}$	I_{1}, at 10% drop in L (amps)	l2, at 20\% drop in L (amps)	Max. DCR (ohms)	$\begin{gathered} \text { MIL } \\ \text { Part No. } \end{gathered}$
SRC-10000	1	10,000	. 84	1.1	2.1	M27/289-01
SRC-6400	1	6400	1	1.35	1.4	M27/289-02
SRC-2500	1	2500	1.6	2.2	. 55	M27/289-03
SRC-1600	1	1600	2.1	2.8	. 34	M27/289-04
SRC-1000	1	1000	2.6	3.5	. 21	M27/289-05
SRC-640*	2	$\begin{aligned} & 640 \text { (SER) } \\ & 160 \text { (PAR) } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9 \end{aligned}$	$\begin{aligned} & .13 \\ & .033 \end{aligned}$	M27/289-06
SRC-400*	2	$\begin{aligned} & 400 \text { (SER) } \\ & 100 \text { (PAR) } \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.4 \\ 10.8 \end{array}$	$\begin{aligned} & .088 \\ & .022 \end{aligned}$	M27/289-07
SRC-240*	2	$\begin{array}{r} 240 \text { (SER) } \\ 60 \text { (PAR) } \end{array}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 6.8 \\ 13.6 \\ \hline \end{array}$	$\begin{array}{r} .056 \\ .014 \\ \hline \end{array}$	M27/289-08

*Two identical windings brought out to four terminals permit series, parallel, center tapped or transformer connections.

SRD - INCREASED POWER HANDLING CAPABILITY

Type	No. of Windings	Inductance at ODC ($\mu \mathrm{H}$)	I, at 10% drop in L (amps)	12, at 20\% drop in L (amps)	Max. DCR (ohms)	MIL Type №.
SRD-500	1	500	9.5	13	. 033	TF5S04ZZ
SRD-900	1	900	7.3	10	. 057	TF5S04ZZ
SRD-2500	1	2500	4.4	6	. 15	TF5S04ZZ
SRD-5000	1	5000	3.1	4.2	. 33	TF5S04ZZ
SRD-10000	1	10,000	2.2	3	. 60	TF5S04ZZ
SRD-22000	1	22,000	1.4	2	1.4	TF5S04ZZ
SRD-40000	1	40,000	1.1	1.5	2.4	TF5S04ZZ
SRD-90000	1	90,000	. 73	1	5.4	TF5S04ZZ
SRD-360000	1	360,000	. 36	. 50	22	TF5S04ZZ
SRD-1.4	1	1.4 Hy	. 18	. 25	88	TF5S04ZZ
SRD-5.6	1	5.6 Hy	. 09	. 125	352	TF5S04ZZ

MIL Type TF5S04ZZ

DC-DC Converters

SPECIFICATIONS

ISOLATED AND NON-ISOLATED

 Input Voltage$\pm 20 \%$ of nominal except 5
VDC output, $\pm 20 \% .48$ VDC
input range $42-60$ VDC. Do not
exceed $1.2 x$ nom. or rev
polarity.
Output Voltage
$\pm 1 \%$ of nominal.

Output Current

See rating table. Load
regulation specified over output current range.

Line Regulation

0.5% of nominal $\mathrm{V}_{\text {in }}$ for isolation series except -0505 models. All others 0.8\%.

Load Regulation

Specified over output current range. Non-isolation series is 1.5%. Isolation series is 3\% except 5 VDC outputs and Telcom series, 6\%.

Efficiency

70%; 5 VDC outputs 60\%.

Temperature Coefficient

 $0.03 \%{ }^{\circ} \mathrm{C}$ max.
Overload Protection

Current limiting type circuitry on isolation series only. Short circuit current is 130-200\% F.L.

Operating Temperature

Full rated output from $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ without derating.

Operating Frequency 150 kHz .

Ripple and Nolse

60 mv typical, 100 mv p-p max.

Storage Temperature

 $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
FEATURES -

NON-ISOLATED

- Miniaturized
- Surface mount technology
- Low cost non-isolation models
- Voltage boosting
- Polarity reversing
- Built-in noise filter inductor
- Up to 70% efficiency
- Single and dual outputs
- Board mountable
- MIL-STD-202 testing

Humidity

95\% RH.
Weight
See table.
Insulation Resistance 50 Mohm at 500 VDC min.

Dielectric Voltage

500 VDC, primary to secondary for one minute. Isolation series only.

Solderability

$230^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; dipping time 5 sec. $\pm 0.5 \mathrm{sec}$. MIL-STD-202, method 208C.
Soldering Heat Resistance $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; dipping time 10 sec. $\pm 1 \mathrm{sec}$. MIL-STD-202, method 210A.
Temperature Cycling
5 cycles; $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at 30 min . each. MIL-STD-202, method 102A.

Vibration

Smallest of longest distance;
1.52 mm or $15 \mathrm{G}, 10-2,000 \mathrm{~Hz}$. MIL-STD-202, method 204C.

Shock

50G half-wave sine wave. MIL-STD-202, method 213B.

Humidity Resistance

$40^{\circ} \mathrm{C}, 95 \%$ RH; 1344 hours. MIL-STD-202, 103B.
High Temperature Life
500 hrs at $+70^{\circ} \mathrm{C}$, fixed rated FL current. MIL-STD-202, method 108A.

Terminal Strength

Tensil 2.2 kg , bending $90^{\circ} 3$ times. MIL-STD-202, method 211A.

NON-ISOLATION POLARITY REVERSING CONVERTERS

Model ${ }^{\text {No. }}$	$\begin{gathered} V_{\text {f }} \\ (V D C) \end{gathered}$	$\begin{aligned} & V_{\text {out }} \\ & (V D C) \end{aligned}$	Line Reg. (\%) max.	$(m A)^{I_{\text {out }}}-(m A)$	Load Reg. (\%) max.	Efficiency (\%) TYP	Temp. Coefficient (\% $/{ }^{\circ} \mathrm{C}$) max.
OPT-BAN-0205	1~3.5	-5	± 2	3~10	1.5	57	0.1
OPT-BAN-0212	1-3.5	-12	± 1	$1.25 \sim 4.17$	1.5	62	0.1
OPT-BAN-0215	1~3.5	-15	± 1	1~3.33	1.5	62	0.1
OPT-BAP-0205	1~3.5	5	± 2	$3 \sim 10$	1.5	57	0.1
OPT-BAP-0212	1~3.5	12	± 1	$1.25 \sim 4.17$	1.5	62	0.1
OPT-BAP-0215	1~3.5	15	± 1	1~3.33	1.5	62	0.1
OPT-NAN-0505	5	-5	± 0.8	5-20	1.5	60	0.03
OPT-NAN-0512	5	-12	± 0.8	2.5~8.5	1.5	60	0.03
OPT-NCN-0505	5	-5	± 0.8	18-60	1.5	60	0.03
OPT-NCN-0512	5	-12	± 0.8	7.5~25	1.5	60	0.03
OPT-RCN-0505	$5 \pm 10 \%$	-5	± 1.2	18~60	1.5	62	± 0.05
OPT-RCN-0512	$5 \pm 10 \%$	-12	± 1.2	$7.5 \sim 25$	1.5	62	± 0.1
OPT-RCN-1205	$12 \pm 20 \%$	-5	± 1.2	18~60	1.5	67	± 0.05
OPT-RCN-1212	$12 \pm 20 \%$	-12	± 1.2	7.5-25	1.5	67	± 0.1
OPT-RFP-2405	$24 \pm 30 \%$	5	± 1.2	60~200	1.5	72	± 0.05
OPT-RHP-2405	$24 \pm 30 \%$	5	± 1.2	120~400	1.5	72	± 0.05

[^6]Boosting Non-Isolation Converters

NON-ISOLATION VOLTAGE BOOSTING CONVERTERS

Model No.	$\begin{aligned} & V_{\text {in }} \\ & \text { (VDC) } \end{aligned}$	$\begin{aligned} & V_{\text {oet }} \\ & (V D C) \end{aligned}$	Line Reg. (\%) max.	$(\mathrm{mA})^{\mathrm{I}_{\text {out }}}(\mathrm{mA})$	Load Reg. (\%) max.	Efficiency (\%) TYP	Temp. Coefficient ($\% /{ }^{\circ} \mathrm{C}$) max.
OPT-NAP-0512	5	12	± 0.8	2.5~8.4	1.5	70	0.03
OPT-NAP-0515	5	15	± 0.8	2.0~6.7	1.5	70	0.03
OPT-NAP-0524	5	24	± 0.8	1.2-4.2	1.5	70	0.03
OPT-NCP-0512	5	12	± 0.8	7.5~25	1.5	70	0.03
OPT-NCP-0515	5	15	± 0.8	$6.0 \sim 20$	1.5	70	0.03
OPT-NCP-0524	5	24	± 0.8	$3.7 \sim 12.5$	1.5	70	0.03
OPT-NDP-0512	5	12	± 0.8	12.5~42	1.5	70	0.03
OPT-NDP-0515	5	15	± 0.8	10~34	1.5	70	0.03
OPT-NDP-0524	5	24	± 0.8	6.2~21	1.5	70	0.03
OPT-NFP-0512	5	12	± 0.8	25-84	1.5	70	0.03
OPT-NFP-0515	5	15	± 0.8	20~67	1.5	70	0.03
OPT-NFP-0524	5	24	± 0.8	12.5~42	1.5	70	0.03

Request brochure for circuit configurations, dimensions and pin outs.

DC-DC Converters

ISOLATION CONVERTERS

0.3 WATT ISOLATION CONVERTERS

Model No.	$V_{\text {in }}$ (VDC)	$V_{\text {out }}$ (VDC)	$I_{\text {out }}$ (ma)
OPT-ICS-0505	5	5	60
OPT-ICS-0512	5	12	25
OPT-ICD-0512	5	± 12	12.5
OPT-ICS-1205	12	5	60
OPT-ICS-1212	12	12	25
OPT-ICD-1212	12	± 12	12.5
OPT-ICS-2405	24	5	60
OPT-ICS-2412	24	12	25
OPT-ICD-2412	24	± 12	12.5

0.5 WATT ISOLATION CONVERTERS

Model No.	$\boldsymbol{V}_{\text {in }}$ (VDC)	$\boldsymbol{V}_{\text {out }}$ (VDC)	$I_{\text {out }}$ (ma)
OPT-IDS-0505	5	5	100
OPT-IDS-0512	5	12	42
OPT-IDD-0512	5	± 12	21
OPT-IDS-1205	12	5	100
OPT-IDS-1212	12	12	42
OPT-IDD-1212	12	± 12	21
OPT-IDS-2405	24	5	100
OPT-IDS-2412	24	12	42
OPT-IDD-2412	24	± 12	21

1.0 WATT ISOLATION CONVERTERS

Model No.	$\mathbf{V}_{\text {in }}$ (VDC)	$\mathbf{V}_{\text {out }}$ (VDC)	$I_{\text {out }}$ $(\mathrm{ma)}$
OPT-IFS-0505	5	5	200
OPT-IFS-0512	5	12	84
OPT-IFD-0512	5	± 12	42
OPT-IFS-0524	5	24	42
OPT-IFS-1205	12	5	200
OPT-IFS-1212	12	12	84
OPT-IFD-1212	12	± 12	42
OPT-IFS-2405	24	5	200
OPT-IFS-2412	24	12	84
OPT-IFD-2412	24	± 12	42

3.0 WATT ISOLATION TYPE CONVERTERS

Model No.	$\mathbf{V}_{\text {ln }}$ (VDC)	$\mathbf{V}_{\text {out }}$ (VDC)	$\mathbf{I}_{\text {out }}$ $(\mathrm{ma)}$
OPT-IKS-0505	5	5	600
OPT-IKD-0512	5	± 12	125
OPT-IKS-0524	5	24	125
OPT-IKS-1205	12	5	600
OPT-IKS-1212	12	12	250
OPT-IKD-1212	12	± 12	125
OPT-IKS-2405	24	5	600
OPT-IKS-2412	24	12	250
OPT-IKD-2412	24	± 12	125

48V TELCOM MULTIPLE OUTPUT

CONVERTERS

Model No.	$V_{\text {in }}$ $(V D C)$	$V_{\text {out }}$ $(V D C)$	$I_{\text {out }}$ $(\mathbf{m a)}$
OPT-IDQ-48A	48	± 5	20
OPT-IFQ-48A	48	± 12	4.2
OPT-IKQ-48A	48	± 12	33

ISOLATION SERIES DIMENSIONS

NOTES

Windings are balanced to within 1\%
Dielectric strength between windings tested at 1,250 volts
All units are magnetically shielded

All units meet MIL-T-27 Type TF5R04ZZ
CMB's and CMC's have mounting stud for added sturdiness
Current rating is for $40^{\circ} \mathrm{C}$ heat rise

APPLICATION

EMI Common Mode Supression Inductors are used in input-filter circuits of switch mode power supplies.
Windings are balanced to within 1% effectively cancelling the differential mode current in the windings.

PACKAGING

To complete MIL-T-27 specifications Grade 5, Class R, MIL Type TF5R04ZZ.

CONSTRUCTION

Magnetically shielded, CMB \& CMC Types have a mounting stud for added sturdiness.

RATINGS

Current rating is for $40^{\circ} \mathrm{C}$ heat rise. Dielectric strength between windings is tested for 1250 volts.

	A	B	C	D	E	F	G
	Max. Dia.	Max.			$\begin{gathered} \pm 1.6 \\ (\pm .06) \end{gathered}$	$\begin{aligned} & \text { UNC } \\ & -2 A \end{aligned}$	Min.
CMA	20.6	12.7	10.0	10.0			3.0
	(.811)	(.500)	(.394)	(.394)			(.118)
CMB	24.3	15.9	12.5	12.5	7.9	\#4-40	3.0
	(.956)	(.625)	(.492)	(.492)	(.31)		(.118)
CMC	29.0	18.5	15.0	15.0	7.9	\#4-40	4.0
	(1.142)	(.728)	(.590)	(.590)	(.31)		(.157)

All dimensions are in millimeters. Decimal equivalents in parenthesis.
CMA, CMB, CMC

PN	Ind. MilliHys	IRMS Amps	Typ. Leakage uHys	DCR Ohms Max.*
CMA-1	1	2.4	10	.048
CMA-3	3	1.5	20	.12
CMA-9	9	1.1	40	.25
CMB-1	1	4.4	15	.032
CMB-3	3	2.8	20	.080
CMB-9	9	2.0	40	.16
CMC-3	3	4.8	20	.035
CMC-9	9	3.0	40	.090
CMC-16	16	2.2	60	.16

- Per winding; 1V, $10 \mathrm{kHz} .{ }^{*}$ Each winding

ALTERNATE CAPABILITIES

These units can be used as high frequency matching transformers in the RF frequency range. Data pertaining to their performance in such a capability is given in the table below.

PN	Pri-Imp/Sec-Imp (ohms)	Freq. Range	Power mW
CMA-1	$16 / 16$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	35
	$64 / 64$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	70
CMA-3	$50 / 50$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	35
	$200 / 200$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	70
CMA-9	$150 / 150$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	35
	$600 / 600$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	70
CMB-1	$16 / 16$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	70
	$64 / 64$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	150
CMB-3	$50 / 50$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	70
	$200 / 200$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	150
CMB-9	$150 / 150$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	70
	$600 / 600$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	150
CMC-3	$50 / 50$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	115
	$200 / 200$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	230
CMC-9	$150 / 150$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	115
	$600 / 600$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	230
CMC-16	$250 / 250$	$1.5 \mathrm{KHz}-1.5 \mathrm{MHz}$	115
	$1000 / 1000$	$6 \mathrm{KHz}-5 \mathrm{MHz}$	230

FP
 400Hz Transformers

APPLICATION

Offering significant cost and size advantages over competitive low-voltage, high-current toroids, FP Series 400 Hz power transformers are wide applicability types which will fit many modern circuit needs.

RATINGS

Three power levels are available: 10, 20 and 30 watts. Within each power rating, three different winding and secondary tap arrangements are provided to cover a total voltage range from 2 to 30 volts. Since performance specifications are based on maximum-voltage, full-winding use, slight power derating is required when
employing lower voltage taps, to keep current density normal.

CONSTRUCTON

FP transformers feature a semi-toroidal, hum-bucking, self-shielding construction. Integral electrostatic shields are terminated in two unique mounting tabs. The units are of a low-profile design - . 62 inches high - to fit "sandwich board" shallow drawer requirements. "PC" terminal types on all units.

MIL SPECS

To complete MIL-T-27 specifications, MIL Type No. TF5S03ZZ, Grade 5, Class S.

SPECIFICATIONS

TypeNo.	MIL PartNo.	Power Rating (Watts)	Primary Voltage (Volts)	SecondaryVoltages (Volts)	Weight Lb.
FP-011	M27/325-01	10	115	$2,3,4,5,6,7,8,10$.125
FP-021	M27/325-02	10	115	$4,6,8,10,12,14,16,20$.125
FP-031	M27/325-03	10	115	$6,9,12,15,18,21,24,30$.125
FP-012	M27/325-04	20	115	$2,3,4,5,6,7,8,10$.25
FP-022	M27/325-05	20	115	$4,6,8,10,12,14,16,20$.25
FP-032	M27/325-06	20	115	$6,9,12,15,18,21,24,30$.25
FP-013	M27/325-07	30	115	$2,3,4,5,6,7,8,10$.38
FP-023	M27/325-08	30	115	$4,6,8,10,12,14,16,20$.38
FP-033	M27/325-09	30	115	$6,9,12,15,18,21,24,30$.38

DIMENSIONS

$\begin{aligned} & \text { Type } \\ & \text { No. } \\ & \hline \end{aligned}$			Terminal Spacing" 8 " $\pm .005$ in.	$\begin{aligned} & \text { TabWioth } \\ & \text { "C" } \pm . \text { Oin. } \end{aligned}$	$\begin{aligned} & \text { TabSpacing } \\ & \text { " } 0^{n} \pm .01 i n . \end{aligned}$	A $\pm .03 i n$.	8 $\pm .005 i n$	C $\pm .02 i n$.	0 $\pm .000 \mathrm{in}$.	E $\pm .005 i n$.
FP. 011	1.2459.	. 62	. 200	. 38	1.128	1.24	. 200	. 38	1.128	. 300
FP-021	1.24 sq .	. 62	200	. 38	1.128	1.24	. 200	. 38	1.128	. 300
FP. 031	1.24 sq .	. 62	. 200	. 38	1.128	1.24	. 200	. 38	1.128	. 300
FP. 012	1.75sq.	. 62	. 400	. 38	1.625	1.75	. 400	. 38	1.625	. 350
FP.022	1.75sq.	. 62	. 400	. 38	1.625	1.75	. 400	. 38	1.625	. 350
FP. 632	1.75sq.	. 62	. 400	. 38	1.625	1.75	. 400	. 38	1.625	. 350
FP. 013	2.25 sq.	. 62	. 600	. 50	2.132	2.25	. 600	. 50	2.132	. 400
FP.023	$2.25 s q$.	. 62	. 600	. 50	2.132	2.25	. 600	. 50	2.132	. 400
FP. 033	2.2550.	. 62	. 600	. 50	2.132	2.25	. 600	. 50	2.132	. 400

H, MET
 IC Supply Transformers

NOTES

Chart on facing page shows the secondary $A C$ voltages available, and the approximate DC voltages resulting, in typical capacitive filter silicon rectifier circuits (at the indicated currents). Since the capacitor following the rectifier affects the $D C$, voltage values used (in 1000 mfd) are shown in parenthesis () after each current rating.
Primary taps can modify nominal AC voltages by -6\%, $+6 \%$, and $+12 \%$.

PACKAGING

Hermetically sealed. Drawn metal case to Mil Grade 4.

MIL SPECS

To complete MIL-T-27 Specs. Mil Type TF4S03 plus two letter case code. H-915 is qualified as M27/184-01. H-935 is qualified as M27/157-01. H-925 is qualified as M27/156-01.

INCLUDING MET ${ }^{\text {TM }}$ SERIES

Primary 115 Volts, $50 / 60 \mathrm{~Hz}$ Nominal Sec. Volts, 8.25 to 40.5

Type No.	MIL DC Range	Indust. DC Range	MIL Case
H-915	$6 \mathrm{~V}-.065 \mathrm{~A}$ to $53 \mathrm{~V}-.02 \mathrm{~A}$	$6 \mathrm{~V}-.085 \mathrm{~A}$ to $53 \mathrm{~V}-.025 \mathrm{~A}$	AH
$\mathrm{H}-925$	$6 \mathrm{~V}-.22 \mathrm{~A}$ to $53 \mathrm{~V}-.07 \mathrm{~A}$	$6 \mathrm{~V}-.28 \mathrm{~A}$ to $53 \mathrm{~V}-.085 \mathrm{~A}$	AJ
$\mathrm{H}-935$	$6 \mathrm{~V}-1.2 \mathrm{~A}$ to $53 \mathrm{~V}-.4 \mathrm{~A}$	$6 \mathrm{~V}-1.52 \mathrm{~A}$ to $53 \mathrm{~V}-.48 \mathrm{~A}$	FA
$\mathrm{H}-94$	$6 \mathrm{~V}-3 \mathrm{~A}$ to $53 \mathrm{~V}-1 \mathrm{~A}$	$6 \mathrm{~V}-3.8 \mathrm{~A}$ to $53 \mathrm{~V}-1.2 \mathrm{~A}$	HA
$\mathrm{H}-95$	$6 \mathrm{~V}-7.5 \mathrm{~A}$ to $53 \mathrm{~V}-2.5 \mathrm{~A}$	$6 \mathrm{~V}-9 \mathrm{~A}$ to $53 \mathrm{~V}-3 \mathrm{~A}$	KA
$\mathrm{H}-96$	$6 \mathrm{~V}-18 \mathrm{~A}$ to $53 \mathrm{~V}-6 \mathrm{~A}$	$\mathbf{6 V}-23 \mathrm{~A}$ to $53 \mathrm{~V}-7.5 \mathrm{~A}$	OA

Primary 115 Volts, $50 / 60 \mathrm{~Hz}$ Nominal Sec. Volts, 16.5 to 81

| H-965 | $12 \mathrm{~V}-1.5 \mathrm{~A}$ to $106 \mathrm{~V}-.5 \mathrm{~A}$ | $12 \mathrm{~V}-1.9 \mathrm{~A}$ to $106 \mathrm{~V}-.6 \mathrm{~A}$ | HA |
| :--- | :--- | :--- | :--- | :--- | :--- |

Primary 115 Volts, 400 Hz Nominal Sec. Volts, 8.25 to 40.5

MET-445	$6 \mathrm{~V}-6 \mathrm{~A}$ to 53 V - 2 A	$6 \mathrm{~V}-75 \mathrm{~A}$ to $53 \mathrm{~V}-.24 \mathrm{~A}$	AH
MET-455	$6 \mathrm{~V}-1.2 \mathrm{~A}$ to 53 V -. 4 A	$6 \mathrm{~V}-1.25 \mathrm{~A}$ to $53 \mathrm{~V}-.48 \mathrm{~A}$	AJ
MET-465	$6 \mathrm{~V}-3 \mathrm{~A}$ to $53 \mathrm{~V}-1 \mathrm{~A}$	$6 \mathrm{~V}-3.8 \mathrm{~A}$ to $53 \mathrm{~V}-1.2 \mathrm{~A}$	FA
MET-475	$6 \mathrm{~V}-7.5 \mathrm{~A}$ to $53 \mathrm{~V}-2.5 \mathrm{~A}$	$6 \mathrm{~V}-9 \mathrm{~A}$ to $53 \mathrm{~V}-3 \mathrm{~A}$	HA

Primary 115 Volts, $\mathbf{4 0 0 ~ H z ~ N o m i n a l ~ S e c . ~ V o l t s , ~} 16.5$ to 81

| MET-495 | 12 V -.6A to 106 V -. 2 A | $12 \mathrm{~V}-.76 \mathrm{~A}$ to $106 \mathrm{~V}-.24 \mathrm{~A}$ | AJ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	Dimensions (inches)						
Case symbol	Envelope			B	C	D	E
syounting							
AH	1.312	1.312	1.750			1.250	$.138-32 \times .375$
AJ	1.625	1.625	2.375	1.188	1.188		$.138-32 \times .375$
EA	1.938	1.812	2.750	1.375	1.250		$.138-32 \times .375$
FA	2.312	2.062	3.125	1.688	1.438		$.138-32 \times .375$
HA	3.062	2.625	4.250	2.297	1.859		$.164 .32 \times .375$
KA	3.938	3.375	5.250	3.000	2.438		$.190 .32 \times .500$
OA	5.500	4.500	6.750	3.750	3.000		$.250-20 \times .625$

IC Supply Transformers

AC AND DC VOLtages at indicated currents

MIL-T-27 RATINGS IN REGULAR TYPE, INDUSTRIAL RATINGS IN BLUE BAR

SECONDARY AC VOLTAGES AND APPROXIMATE DC VOLTAGES

Nom. AC Volts*	40.5	32.25	28.5	24	20.25	16.5	12	8.25	40.5 CT	24 CT	16.5 CT
Appr. DC Volts*	53	41	34	25	24	18	12	6	24	12	6.6

DC AMPERES (Capacitance in Parenthesis) 60 Hz TYPES Type №.

H-915	. 02	(.1)	. 023	(.1)	. 025	(.1)	. 027	(.1)	. 042	(.2)	. 035	(.2)	. 055	(.2)	. 065	(.2)	. 035	(.2)	. 040	(.2)	. 055	(.2)
H-915	. 025	(.1)	. 035	(.1)	. 040	(.1)	. 042	(.1)	. 055	(.2)	. 042	(.2)	. 070	(.2)	. 085	(.2)	. 042	(.2)	. 055	(.2)	. 068	(.2)
H-925	. 07	(.1)	. 08	(.1)	. 085	(.1)	. 09	(.1)	. 14	(.2)	. 11	(.2)	. 18	(.2)	. 22	(.2)	. 11	(.2)	. 13	(.2)	. 17	(.2)
H-925	. 085	(.1)	. 12	(.1)	. 13	(.1)	. 14	(.1)	. 18	(.2)	. 14	(.2)	. 23	(.2)	. 28	(.2)	. 14	(.2)	. 17	(.2)	21	(.2)
H-935	. 4	(.5)	. 44	(.5)	. 48	(.5)	. 52	(.5)	. 8	(1)	. 6	(1)	1.0	(2)	1.2	(2)	. 6	(1)	. 72	(1)	. 92	(2)
H-935	. 48	(.5)	. 6	(.5)	. 6	(.5)	. 64	(.5)	1.0	(1)	. 8	(1)	1.2	(2)	1.52	(2)	. 8	(1)	. 88	(1)	1.12	(2)
H-94	1	(.5)	1.1	(.5)	1.2	(.5)	1.3	(.5)	2	(1)	1.5	(1)	2.5	(2)	3	(2)	1.5	(1)	1.8	(1)	2.3	(2)
H-94	1.2	(.5)	1.5	(.5)	1.5	(.5)	1.6	(.5)	2.5	(1)	2	(1)	3	(2)	3.8	(2)	2	(1)	2.2	(1)	2.8	(2)
H-95	2.5	(1)	3	(1)	3	(1)	3.5	(1)	5	(2)	3.7	(2)	6	(4)	7.5	(4)	3.7	(2)	4.5	(2)	5.5	(4)
H-95	3	(1)	3.5	(1)	3.8	(1)	4	(1)	6	(2)	4.5	(2)	7.5	(4)	9	(4)	4.5	(2)	5.5	(2)	6.7	(4)
H-96	6	(4)	7	(4)	7.5	(4)	8	(4)	12	(6)	9	(6)	15	(12)	18	(12)	9	(6)	11	(6)	13.5	(12)
H-96	7.5	(4)	8.5	(4)	9.5	(4)	10	(4)	15	(6)	11	(6)	19	(12)	23	(12)	11	(6)	13.5	(6)	17	(12)

400 Hz TYPES

MET-445	.2	$(.15)$.22	$(.15)$.24	$(.15)$.26	$(.15)$.4	$(.25)$.3	$(.25)$.5	$(.5)$.6	$(.5)$.3	$(.25)$.36	$(.25)$.46	$(.5)$
MET-445	.24	$(.15)$.3	$(.15)$.3	$(.15)$.32	$(.15)$.5	$(.25)$.4	$(.25)$.6	$(.5)$.75	$(.5)$.4	$(.25)$.44	$(.25)$.56	$(.5)$
MET-455	.4	$(.15)$.44	$(.15)$.48	$(.15)$.52	$(.15)$.8	$(.25)$.6	$(.25)$	1.0	$(.5)$	1.2	$(.5)$.6	$(.25)$.72	$(.25)$.92	$(.5)$
MET-455	.48	$(.15)$.6	$(.15)$.6	$(.15)$.64	$(.15)$	1.0	$(.25)$.8	$(.25)$	1.2	$(.5)$	1.52	$(.5)$.8	$(.25)$.88	$(.25)$	1.12	$(.5)$
MET-465	1	$(.15)$	1.1	$(.15)$	1.2	$(.15)$	1.3	$(.15)$	2	$(.25)$	1.5	$(.25)$	2.5	$(.5)$	3	$(.5)$	1.5	$(.25)$	1.8	$(.25)$	2.3	$(.5)$
MET-465	1.2	$(.15)$	1.5	$(.15)$	1.5	$(.15)$	1.6	$(.15)$	2.5	$(.25)$	2	$(.25)$	3	$(.5)$	3.8	$(.5)$	2	$(.25)$	2.2	$(.25)$	2.8	$(.5)$
MET-475	2.5	$(.25)$	3	$(.25)$	3	$(.25)$	3.5	$(.25)$	5	$(.5)$	3.7	$(.5)$	6	(1)	7.5	(1)	3.7	$(.5)$	4.5	$(.5)$	5.5	(1)
MET-475	3	$(.25)$	3.5	$(.25)$	3.8	$(.25)$	4	$(.25)$	6	$(.5)$	4.5	$(.5)$	7.5	(1)	9	(1)	4.5	$(.5)$	5.5	$(.5)$	6.7	(1)

SECONDARY AC VOLTAGES AND APPROXIMATE DC VOLTAGES

Nom. AC Vols**	81	64.5	57	48	40.5	33	24	16.5	81 CT	48 CT	33 CT
Appr DC Volts*	106	82	68	50	48	36	24	12	48	24	13

DC AMPERES (Capacitance in Parenthesis) 60 Hz TYPES
Type No .

H-965	0.5	(.125)	0.55	(.125)	0.6	(.125)	0.65	(.125)	1.0	(.25)	0.75	(.25)	1.25	(.5)	1.5	(.5)	0.75	(.25)	0.9	(.25)	1.15	(.5)
H-965	0.6	(.125)	0.75	(.125)	0.75	(.125)	0.8	(.125)	1.25	(.25)	1.0	(.25)	1.5	(.5)	1.9	(.5)	1.0	(.25)	1.1	(.25)	1.4	(.5)

400 Hz TYPE

MET-495	.2	$(.04)$.22	$(.04)$.24	$(.04)$.26	$(.04)$.4	$(.06)$.3	$(.06)$.5	$(.06)$.6	$(.06)$.3	$(.06)$.36	$(.06)$.46	$(.06)$
MET-495	.24	$(.04)$.3	$(.04)$.3	$(.04)$.32	$(.04)$.5	$(.06)$.4	$(.06)$.6	$(.06)$.76	$(.06)$.4	$(.06)$.44	$(.06)$.56	$(.06)$

[^7]
DOT, H, MET
 400Hz Transformers

MOLDED TYPES, GRADE 5

PAGE NOTES

PACKAGING

Hermetically sealed, DO-T's
and MET's metal encased.
H -101 group - molded.

APPLICATION

Transistor/filament and isolation.

SHIELDING

All isolation transformers electrostatically shielded.

MIL SPECS
To complete MIL-T-27D specs. DO-T's: Grade 5, Class R. MET's: Grade 4, Class S.
Molded units: Grade 5, Class S.

Primary: 105/115 Volts $380-1000 \mathrm{~Hz}$ Secondary: 6.3 VCT 2500V RMS Test

| Type No. MIL-Type | Sec. Amp. | L In. | W In. | H In. | Mtg. Dim. | Wt. Lbs. | |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | :---: | :---: |
| H-101 | TF5SO3ZZ | 3.5 | 1.781 | 1.656 | 2.0 | 1.125×1.156 | .3 |
| H-102 | M27/202-01 | 5.5 | 1.750 | 2.0 | 2.25 | 1.125×1.281 | .44 |
| H-103 | M27/158-01 | 10 | 2.312 | 2.125 | 2.50 | 1.687×1.406 | .8 |
| H-104 | M27/201-01 | 25 | 2.875 | 2.500 | 3.036 | 2.187×1.531 | 1.5 |

H -101 thru H -104 mounted by 4 holes .157 D
500V RMS TEST

Type No.	H-118	H-148 \ddagger	H-149
Application	Supply	Isolation	Supply
Primary	$105 / 115 \mathrm{~V} 380-1000 \mathrm{~Hz}$	$105 / 115 \mathrm{~V} 400 \mathrm{~Hz}$	$28 \mathrm{~V} 380-1000 \mathrm{~Hz}$
Secondary	$6.3 \mathrm{VCT}-.3 \mathrm{~A}$	115 V CT-02A	1)$6.3 \mathrm{~V}-.08 \mathrm{~A}$ 6.3 V .08 A 2 $12.6 \mathrm{~V} .08 \mathrm{~A}^{*}$ $6.3 \mathrm{~V} .16 \mathrm{~A} \dagger$
MIL-Type	TF5S03ZZ	TF5S03ZZ	TF5S03ZZ
Case Type	$\begin{gathered} \text { SO-\#P } \\ \text { See Pg. } 21 \end{gathered}$	$\begin{gathered} \text { SO-\#P } \\ \text { See Pg. } 21 \end{gathered}$	$\begin{gathered} \text { SSO-\#P } \\ \text { See Pg. } 24 \end{gathered}$

- Series Connected. † Parallel Connected. \ddagger ELECTROSTATICALLY SHIELDED.

MIL TYPE TF5RO3ZZ
$0.312^{\prime \prime}$ Dia. $\times 0.406^{\prime \prime}$ Weight $1 / 10$ oz.

METAL ENCASED TYPES, GRADE 5 DO-T400 ${ }^{\text {M }}$ SERIES

Type No:	Application	Primary	Secondary	Rated Heat Rise
DO-T400	Isolation transformer	$28 \mathrm{~V}, 400 \mathrm{~Hz}$	6.3 V @ 60 mA	$40^{\circ} \mathrm{C}$
D0-T410	Isolation transformer	$28 \mathrm{~V}, 400 \mathrm{~Hz}$	$\begin{aligned} & \text { (2 secs.) } \\ & 6.3 \mathrm{~V} @ 30 \mathrm{~mA}, \\ & 6.3 \mathrm{~V} @ 30 \mathrm{~mA} \\ & \hline \end{aligned}$	$40^{\circ} \mathrm{C}$
D0-T415	Isolation transformer	$28 \mathrm{~V}, 400 \mathrm{~Hz}$	$\begin{aligned} & \text { (2 secs.) } \\ & 12.6 \mathrm{~V} @ 15 \mathrm{~mA}, \\ & 12.6 \mathrm{~V} @ 15 \mathrm{~mA} \\ & \hline \end{aligned}$	$40^{\circ} \mathrm{C}$
D0-T420	Electrostatically shielded isolation transformer	$28 \mathrm{~V}, 400 \mathrm{~Hz}$	28 V @ 10 mA	$40^{\circ} \mathrm{C}$
D0-T430	3-watt autotransformer	$28 \mathrm{~V}, 400 \mathrm{~Hz}$	$\begin{aligned} & 12.6 \mathrm{~V}-0 . \\ & 12.6 \mathrm{~V} @ 120 \mathrm{~mA} \end{aligned}$	$40^{\circ} \mathrm{C}$
D0-T440	3/4-watt autotransformer	$28 \mathrm{~V}, 400 \mathrm{~Hz}$	$\begin{aligned} & 6.3 \mathrm{~V}-0- \\ & 6.3 \mathrm{~V} @ 60 \mathrm{~mA} \\ & \hline \end{aligned}$	$40^{\circ} \mathrm{C}$
$\begin{aligned} & \hline \text { DO-TSH } \\ & \text { DO-TSH2 } \end{aligned}$	Drawn Hipermalloy shields provide 20 to 40 dB shielding, each. See Catalog page 10 for dimensions.			

MET ${ }^{\text {TM }}$ SERIES

Type No.	MIL Type	Pri. Volt	Sec. Volts	Amps. (MIL)	Amps (Industrial)	Sec. Test Volts RMS	$\begin{aligned} & \text { MIL } \\ & \text { Case } \end{aligned}$
MET-400 \ddagger	TF4S03AH	$\begin{aligned} & 380-1000 \mathrm{~Hz} \\ & 105 / 115 / 125 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 115 \mathrm{CT} \\ & 115 \mathrm{CT} \\ & 230^{\circ} \\ & 115 \dagger \\ & \hline \end{aligned}$	$\begin{aligned} & .06 \\ & .06 \\ & .06 \\ & .12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .072 \\ & .072 \\ & .072 \\ & .144 \\ & \hline \end{aligned}$	1000	AH
MET-405 \ddagger	TF4S03EA	$\begin{aligned} & 380-1000 \mathrm{~Hz} \\ & 105 / 115 / 125 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 115 \mathrm{CT} \\ & 115 \mathrm{CT} \\ & 230^{\circ} \\ & 115 \dagger \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & .24 \\ & .24 \\ & .24 \\ & .48 \\ & \hline \end{aligned}$	1000	EA
MET-420	TF4S03AH	$\begin{aligned} & 380-1000 \mathrm{~Hz} \\ & 105 / 115 / 125 \mathrm{~V} \end{aligned}$	6.3 CT	2	2.5	1500	AH
MET-4309	M27/180-01	$\begin{aligned} & 400 \mathrm{~Hz} \\ & 57.5 .99 .6,115 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 12.6 \mathrm{CT} \\ & 12.6 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	1500	FA

- Series connected. †ParalleI Connected. \ddagger ELECTROSTATICALLY SHIELDED.
§ Two MET-430's Scott connected provide 26 volt two phase from 115 V . three phase 400 Hz input.

GENERAL INFORMATION Selection Guide on Pulse Transformers

APPLICATION

Pulse transformers can be classified into coupling, impedance matching, or blocking oscillator applications.

In the pulse generating application, the characteristics of the circuit elements other than the transformer are effective in determining the pulse characteristics. Consequently, the design engineer must know the circuit in which it will be used.

The best way of specifying a coupling application is to state the source and load impedance, the voltage levels, the repetition rate, and the nature of the desired output pulse in pulse parameters.

As can be seen in the diagram, a given transformer will have the same rise time regardless of the pulse width impressed on it. The droop characteristics, in percent, will be a linear function of the pulse width. A given transformer, having a 10% droop at 1 microsecond, will have a 20% droop at 2 microseconds.

The repetition rate and the pulse width determine the duty cycle which the transformer will see. This is important in the design for temperature rise consideration. Core loss energy is lost on each pulse due to eddy currents and hysteresis. The repetition rate determines the power loss in the core as well as in the windings. The voltage level as well as the pulse width determines the flux density of the transformer. This is

PULSE CHARACTERISTICS

usually stated as the ET constant and expressed in voltmicroseconds.

A transformer of a given ET constant can be used for wider pulse widths and lower voltage levels or vice versa, within the insulation working voltage capability of the transformer.

STANDARD PULSE TRANSFORMER SELECTION GUIDE

Type No.	Ratio	Pulse Width Micro- Seconds	Rise Time MicroSeconds	Droop in \%	Hi-Pot Voltage RMS	Size G	Wt. Grams	MIL Type Designation	Service	Page
H-45 to H-46	$\begin{aligned} & 1: 1: 1 \& \\ & 5: 3: 1 \end{aligned}$.05-25	.01-2	0-30	1250	. $406 \mathrm{D} \times .406 \mathrm{H}$	1	TP7SX1110AZ	Coupling and Blocking Oscillator	45
$\mathrm{H}-47$ to H-52						. $593 \mathrm{D} \times .593 \mathrm{H}$	4	TP7SX1110AC	Higher Voltage, Tube, SCR, etc.	
H-53 to H-57						. $656 \mathrm{D} \times .656 \mathrm{H}$	6	TP7SX1110AN		
$\mathrm{H}-60$ to $\mathrm{H}-68$	$\begin{aligned} & 4: 4: 1 ~ \& ~ \\ & 5: 3: 1 \end{aligned}$.05-10	.012-.40	0-25	100	. $406 \mathrm{D} \times .406 \mathrm{H}$	1	TP7SX4410AZ	Coupling and Blocking Oscillator	45
MPX-100	$1 \mathrm{CT}: 1 \mathrm{CT}$	Manchester II (Bi-phase 1 mHz clock)	0.1	20	100	. $63 \mathrm{SQ} \times .275 \mathrm{H}$	4	TP7SX() KZ	Coupling to Data Line	44
MPX-200	1.41 CT : 1CT					. $63 \mathrm{SQ} \times .275 \mathrm{H}$				
MPX-300	1.25 CT: 1CT					.63SQ x . 275 H				
MPX-400	$\begin{aligned} & 1.4 \mathrm{CT}: 1 \mathrm{CT} \\ & 2 \mathrm{CT}: 1 \mathrm{CT} \end{aligned}$. $63 \mathrm{SQ} \times .25 \mathrm{H}$				
MPX-500	1 CT 1 1CT					. $5 \times .35 \times .25 \mathrm{H}$				
MPX-600	$1 \mathrm{CT}: 1.41 \mathrm{CT}$. $5 \times .35 \times .25 \mathrm{H}$				
PCH-45 to 46	$\begin{aligned} & 1: 1: 1 ~ \& ~ \\ & 5: 3: 1 \end{aligned}$.05-25	.01-2	0-30	1250	. $365 \mathrm{SQ} \times .52 \mathrm{H}$	2	TP7SX1110KZ	Coupling and Blocking Oscillator	45
PCH-47 to 52						. $64 \times .52 \times .52 \mathrm{H}$	6		Higher Voltage, Tube, SCR, etc.	
PCH-53 to 57						. $64 \times .77 \times .64 \mathrm{H}$	8			
PIP	$\begin{aligned} & 4: 4: 1 \& \\ & 5: 3: 1 \end{aligned}$.05-10	. $01-40$	0-15	100	. $344 \mathrm{D} \times .25 \mathrm{H}$	1.5	TP6RX4410CZ TP6RX5310CZ	Coupling and Blocking Oscillator	44

MPX, PIP
 Pulse Transformers

MIL SPECS

MPX pulse transformers fully meet MIL STD 1553B Command/Response Multiplex Data Bus requirements. They also meet MIL-T-21038 Pulse Transformer Specs. MIL Type No. TP7SX () KZ.

PERFORMANCE

MPX pulse transformers feature a high efficiency design for minimum losses. Common mode rejection ratio is greater than 45 db and 1 MHz . Input impedance is greater than 3000 ohms over the band from 75 KHz to 1 MHz at 1 Vrms . This series possesses exceptional waveform integrity. Rise time and fall time is less than 100 nanoseconds. Overshoot and ringing is less than $\pm 1 \mathrm{~V}$ peak. Droop is less than 20%.

CONSTRUCTION

All windings are centertapped for greater circuit application flexibility. The series is packaged in a printed circuit style configuration, with a low profile configuration. Dielectric withstanding voltage is tested at 100 Vrms.

Type No.	Application	Ratio*
MPX-100	Isolation Transformer	$1 \mathrm{CT}: 1 \mathrm{CT}$
MPX-200	Coupling Transformer	1.41 CT: 1 CT
MPX-300	Coupling Transformer	1.25 CT: 1 CT
MPX-400	Coupling Transformer	$\begin{aligned} & 1.4 \text { CT: } 1 \text { CT } \\ & 2 \text { CT: } 1 \text { CT } \end{aligned}$
MPX-500*	Isolation Transformer	$1 \mathrm{CT}: 1 \mathrm{CT}$
MPX-600*	Coupling Transformer	$1 \mathrm{CT}: 1.41 \mathrm{CT}$

*Other ratios available on special order.
MPX 500-600 meet MIL-T-21038 and are subminiature low power pulse transformers. They are not specified in MIL-STD 1553B however they can be used in multiple applications.

MPX 100, 200, 300

MPX 400

MPX 500, 600

PACKAGING

Hermetically sealed. DO-T
family construction. See catalog page 9.

MIL SPECS

To complete MIL-T-21038 Specs, Grade 6, Class R, Life X.

APPLICATION

Transistor, D.W.V. Test $=100 \mathrm{~V}$.

NOTE

All individually adjusted to parameters shown and checked in test circuit to give required pulse width.

See page 45 for Circuits

Precision Miniature Wide Application Pulse Transformers

RATIO 4:4:1

MIL TYPE DESIGNATION TP6RX4410CZ

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Military Part No.	Approx. DCR, Ohms			Blocking Oscillator Pulse					Coupling Circuit Characteristics							Frequency Response Within 2 dbt
					PWidth μ Sec.	RiseTime	\%Over DroopShoot \%		$\begin{gathered} \hline \% \\ \text { Back } \\ \text { Swing } \end{gathered}$	PWidth $\mu \mathrm{Sec}$.	Volt Rise Out Time		\% Over Shoot	Droop \%		Imp. in/out,* ohms	
		$\begin{aligned} & \text { 1-8m } 3-\mathrm{Org} \\ & 2 \cdot \mathrm{Rd} 4-\mathrm{Yel} \end{aligned}$		$\begin{aligned} & \text { 5-Gin } \\ & \text { 6-Blu } \end{aligned}$													
PIP-1	-	. 21	. 23	. 13	. 05	. 02	0	0	37	. 05	9	. 018	0	0	12	50	$150 \mathrm{KHz}-29 \mathrm{MHz}$
PIP-2	-	. 47	. 56	. 22	. 1	. 025	0	0	25	. 1	8	. 02	0	0	5	50	$100 \mathrm{KHz}-17 \mathrm{MHz}$
PIP-3	-	1.01	1.25	. 37	. 2	. 030	2	0	15	. 2	7	. 035	0	0	5	100	$16 \mathrm{KHz} \cdot 9.5 \mathrm{MHz}$
PIP-4	-	1.5	1.85	. 54	. 5	. 05	0	0	15	. 5	7	. 06	0	0	0	100	$7 \mathrm{KHz}-3.25 \mathrm{MHz}$
PIP-5	-	2.45	3.1	. 9	1	. 08	0	0	14	1	6.8	. 15	0	0	5	100	$7.5 \mathrm{KHz}-2.25 \mathrm{MHz}$
PIP-6	-	3.0	3.71	1.1	2	. 10	0	0	15	2	6.6	. 16	0	2	10	100	$2.2 \mathrm{KHz}-1.32 \mathrm{MHz}$
PIP-7	-	4.9	6.05	1.8	3	. 20	0	0	14	3	6.8		0	2	10	100	$1.7 \mathrm{KHz}-1.5 \mathrm{MHz}$
PIP-8	-	8.0	9.7	2.9	5	. 30	0	0	3	5	7.9	. 22	0	13	25	200	$1.8 \mathrm{KHz}-1.45 \mathrm{MHz}$
PIP-9	M21038/6	13.1	15.9	4.7	10	. 35	0	5	12	10	6.5	. 4	0	15	20	200	$1.5 \mathrm{KHz}-1.14 \mathrm{MHz}$

RATIO 5:3:1 MIL TYPE DESIGNATION TP6RX5310CZ

PIP-10	-	. 55	. 41.15	. 1	. 01	0	0	20	. 1	8	. 01	0	0	5	140/50	$170 \mathrm{KHz}-32 \mathrm{MHz}$
PIP-11	-	2.9	2.28 .2	1	. 02	4	4	6	1	6.6	. 05	0	6	12	280/100	$12.5 \mathrm{KHz}-3.25 \mathrm{MHz}$
PIP-12	M21038/7	9.4	7.12 .6	5	. 05	0	12	12	5	8	. 09	2	12	25	560/200	$15 \mathrm{KHz}-4 \mathrm{MHz}$
PIP.SH	-		wn Hiper	lloy	ld		for	spr	vide	to	db		g. 28	hx	359" dia.	有" hole in cover.

* Input winding leads Brn-Rd (1-2); output winding leads Org-Yel (3-4); leads Grn-Blu (5-6) open. \dagger Per coupling circuit \mathbf{Z} in/out, 1 V input.

Pulse

Precision Miniature Pulse Transformers

PACKAGING

H - Vacuum molded; flexible leads.
PCH - Epoxy cased; designed to be used on PC boards with $0.1^{\prime \prime}$ pin spacings. The pins are in a non-symmetrical pattern to provide foolproof insertion.

MIL SPECS

Meet MIL-T-21038 Specs. All units are Grade 7, Class S, Life X.

APPLICATIONS

Transistor blocking oscillators, SCR drivers, coupling and isolation. The PCH 45 through 57 also can be used in transistor circuits.

NOTE

The units are individually adjusted in the circuit shown for each group. Parameters are checked to give the required pulse widths.

DIMENSIONS

	A MAX	B MAX	C MIN	D MAX	$E \pm .005$	$F \pm .005$	$\mathrm{G} \pm .005$	$\mathrm{H} \pm .002$ Dia.
H-45-46	0.406	0.406	2.125					
H-47-52	0.593	0.593	3.250					
H-53-57	0.656	0.656	3.250					
H.60-68	0.406	0.406	2.125					
PCH-45-46	. 365	. 520	1	. 365	. 100	. 200 sq.	. 100	. 016
PCH-47-52	. 640	. 520	1	. 640	. 100	. 300	. 200	. 025
PCH-53-57	. 765	. 640	1	. 765	. 100	. 300	. 200	. 025
PCH-60-68	. 365	. 520	1	. 365	. 100	200 sq.	. 100	. 025

RATIO 1:1:1

Type No.		UTC \& MIL Part No.	Approx. DCR, Ohms			Blocking Oscillator Pulse					Coupling Circuit Characteristics								
							\%		\%				\%		\%	Imp.	Frequency		
					PWidth	h Rise	Over	roop	Back	Wid	lit	Rise	Over		Back	in/out,*	Response		
Type №.PCH H			1-2	3-4	5-6	$\mu \mathrm{Sec}$.	Time	Shoot	\%	Swing	$\mu \mathrm{Sec}$.		Time	Shoot	\%	Swing	ohms	within $2 \mathrm{db} \dagger$	
45	45		M21038/8-001	3	3.5	4	. 05	. 022	0	20	10	. 05	17	. 01	20	0	35	250	$260 \mathrm{kHz}-34 \mathrm{MHz}$
46	46		M21038/8-002	5.5	6.5	7	. 10	. 024	0	25	10	. 10	19	. 01	30	10	50	250	$220 \mathrm{kHz}-34 \mathrm{MHz}$
47	47	M21038/9-001	3.7	4.0	4	. 20	. 026	0	25	8	. 20	18	. 01	30	15	65	500	$260 \mathrm{kHz}-93 \mathrm{MHz}$	
48	48	M21038/9-002	5.5	5.8	6	. 50	. 03	0	20	5	. 50	20	. 01	30	20	65	500	85 kHz -73 MHz	
49	49	M21038/9-003	8	8.5	9	1	. 04	0	20	10	1	24	. 02	15	15	65	500	50 kHz -62.5 MHz	
50	50	M21038/9-004	20	21	22	2	. 05	0	20	10	2	27	. 05	10	15	35	500	$24.5 \mathrm{kHz}-49 \mathrm{MHz}$	
51	51	M21038/9-005	28	31	33	3	. 10	1	20	8	3	26	. 07	10	10	35	500	$12.6 \mathrm{kHz}-5.65 \mathrm{MHz}$	
52	52	M21038/9-006	36	41	44	5	. 13	1	25	8	5	23	. 15	10	10	45	1000	$13 \mathrm{kHz}-3.465 \mathrm{MHz}$	
53	53	-	37	44	49	7	. 28	0	25	8	7	24	. 20	10	10	50	1000	$9.5 \mathrm{kHz}-6.3 \mathrm{MHz}$	
54	54	M21038/10-001	50	58	67	10	. 30	0	20	8	10	24	. 25	10	10	50	1000	$7.1 \mathrm{kHz}-1.35 \mathrm{MHz}$	
55	55	M21038/10-002	78	96	112	16	. 75	0	20	10	16	23	. 40	5	15	20	1000	$1.65 \mathrm{kHz}-3.05 \mathrm{MHz}$	
56	56	-	93	116	138	20	1.25	0	25	10	20	23	. 6	5	10	10	1000	$2.15 \mathrm{kHz}-285 \mathrm{kHz}$	
57	57	M21038/10-003	104	135	165	25	2.0	0	30	10	25	24	1.5	5	10	10	1000	$1.7 \mathrm{kHz}-315 \mathrm{kHz}$	

RATIO 4:4:1

DWV TEST = $\mathbf{1 0 0}$ V RMS

60	60	$\mathrm{M} 21038 / 11-01$.124	.14	.05	.05	.016	0	0	30	.05	9.3 .012	0	0	20	50	$550 \mathrm{kHz}-43 \mathrm{MHz}$
61	61	$\mathrm{M} 21038 / 11-02$.41	.48	.19	.1	.016	0	0	30	.1	8.2 .021	0	0	15	50	$95 \mathrm{kHz}-17 \mathrm{MHz}$
62	62	$\mathrm{M} 21038 / 11-03$.78	.94	.33	.2	.022	0	0	18	.2	7.4 .034	0	5	12	100	$60 \mathrm{kHz}-14.5 \mathrm{MHz}$
63	63	$\mathrm{M} 21038 / 11-04$	1.86	2.26	.70	.5	.027	2	10	20	.5	7.5 .045	0	20	25	100	$22 \mathrm{kHz}-3.7 \mathrm{MHz}$
64	64	$\mathrm{M} 21038 / 11-05$	3.73	4.4	1.33	1	.033	0	12	25	1	7	.078	0	15	23	100
65	65	$\mathrm{M} 21038 / 11-06$	6.2	7.3	2.22	2	.066	0	15	25	2	6.6 .14	0	10	20	100	$8.5 \mathrm{kHz}-2.3 \mathrm{MHz}$
66	66	$\mathrm{M} 21038 / 11-07$	10.2	12	3.6	3	.087	0	18	30	3	6.8 .17	0	10	20	100	$3.9 \mathrm{kHz}-950 \mathrm{kHz}$
67	67	$\mathrm{M} 21038 / 11-08$	14.5	17.5	5.14	5	.097	0	23	28	5	7.9 .2	0	18	28	200	$3.6 \mathrm{kHz}-840 \mathrm{kHz}$
68	68	$\mathrm{M} 21038 / 11-09$	42.3	52.1	14.8	10	.14	0	15	28	10	6.5 .4	0	15	30	200	$1.1 \mathrm{kHz}-400 \mathrm{kHz}$

MIL TYPES

PCH-45-57
 PCH-60-68

H-45-46 TP $75 \times 1110 \mathrm{AZ}$
H-47-52 TP 75×1110 AC
H-53-57 TP 75×1110 AN
H-60-68 TP 75×4410 AZ

GENERAL INFORMATION Hi-Q Inductors Hi-Q Coil Selection Guide

GENERAL INFORMATION ON HIGH Q INDUCTIONS

Over 50 years of specialization in High Q Inductors are reflected in the superior Q and temperature stability of the molybdenum permalloy powder toroids ferrites, and laminated structures produced by UTC today. Range of application is from DC to 30 MHz .

While this catalog lists 6 different types of stock inductors, special custom designs produced to customers' specifications are available on special order. Characteristics such as taps, additional windings, special adjustments such as in a resonant circuit, high voltage capability, inductance adjusted with DC, special mechanical configurations, even better temperature stability than our stock items, etc. are available to customers' requirements.

TECHNICAL DATA

While the toroidal coil is superior for frequencies above 1 KHz , the laminated structure is superior for lower frequencies. The ML and MO use a hum-reducing lamination structure and, in addition, the ML is in a hipermalloy shield case.

The toroidal coils MS, MM, MH and MW have extremely low hum pickup due to the symmetrical winding on the toroidal core.

All stock inductors are measured at 0 DC. The maximum DC listings are for approximately 5% drop
in inductance, and negligible heat rise. The typical curves of inductance variation with AC or DC currents, illustrated on the following pages, best show the range of operation for a particular inductor. The excitation is plotted in milliamperes $x \sqrt{\mathrm{mHy}}$. For example, the 100 mHy MS toroid (MS-100) with 10 ma of DC flowing has an excitation factor of 10 ma $x \sqrt{100 \mathrm{mHy}}=100$, and the curve shows that approximately 90 mHy will be measured with 10 ma DC.

In the curves shown below, the solid line represents a stock series, while the dotted line in the toroidal group represents a few of the special capabilities of UTC in the specific stock size.

Since these high Q coils will saturate before any appreciable temperature rises occur, heating is usually not a problem. A general rule would be that four times the DC listings may be applied without any detrimental heating due to copper loss.

Temperature stability of all UTC inductors is excellent. Guaranteed limits and typical curves of inductance variation with temperature are shown for most types.

Engineering, laboratory, and production facilities are available for full engineering discussion, sampling, and large quantity production to meet special requirements.

Intermediate inductance values in an existing stock toroidal series are available on special order.

Toroidal Types

MS CASE =
.350 OD x .230 H

MP, MM, MH CASE =
.44 OD X .23H

Laminated Types

> ML CASE =
$.44 \times .48 \times .56 \mathrm{H}$

FREQUENCY - kHz

MO CASE =
$.75 \times 1.06 \times .81 \mathrm{H}$

FREQUENCY - kHz

STANDARD HIGH Q INDUCTORS SELECTON GUIDE

Type No.	$\begin{aligned} & \text { MIL } \\ & \text { Gr. } \end{aligned}$	Stock Line Inductance Range	Approximate			Inductance Tolerance Adjustment @ $25^{\circ} \mathrm{C}$	Temp. Stability	Temp. Range	Size	Wt	Page
			$\begin{aligned} & \mathrm{DCR} \\ & \Omega / \mathrm{Hy} \end{aligned}$	$\begin{aligned} & \text { Peak } \\ & 0 \end{aligned}$							
MS	5	1 MHy -100 MHy	1300	40	20 kHz	$\pm 2 \%$ @ . $1 \mathrm{~V}, 1 \mathrm{kHz}$	$\pm 2 \%$	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. 35 dia. x . 23 H	1.3 gm	48
MM	5	3 MHy -120 MHy	1300	60	30 kHz	$\pm 2 \%$ @ . $1 \mathrm{~V}, 1 \mathrm{kHz}$	$\pm 2 \%$	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. 44 dia. \times. 23 H	2 gm	48
MH	5	. $6 \mathrm{MHy}-40 \mathrm{MHy}$	2700	80	100 kHz	$\pm 2 \%$ @ . $1 \mathrm{~V}, 1 \mathrm{kHz}$	$\pm 1 \%$	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. 44 dia. $\times .23 \mathrm{H}$	2 gm	49
ML-O thru ML-4	5	. $15 \mathrm{Hy}-1.4 \mathrm{Hy}$	150	22	1.5 kHz	$\pm 3 \%$ @ $1 \mathrm{~V}, 1 \mathrm{kHz}$	within 2\%	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. $44 \times .48 \times .56 \mathrm{H}$. 202	47
ML-5 thru ML-10	5	2.5 Hy-60 Hy	85	228	800 Hz	$\pm 3 \%$ @ $1 \mathrm{~V}, 400 \mathrm{~Hz}$	$\pm 2 \%$	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. $44 \times .48 \times .56 \mathrm{H}$. 02	47
MW	5	. $05 \mathrm{Hy}-5 \mathrm{Hy}$	500	80	10 kHz	$\pm 1 \%$ @ $1 \mathrm{~V}, 1 \mathrm{kHz}$	$\pm 1 \%$	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. 72 dia. $\times .41 \mathrm{H}$. 2502	49
M0-1 thru M0-1	5	. $1 \mathrm{Hy}-1 \mathrm{Hy}$	130	27	1.5 HHz	$\pm 2 \%$ @ $1 \mathrm{~V}, 1 \mathrm{kHz}$	$\begin{aligned} & +1 \% \\ & -2 \% \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. $75 \times 1.06 \times .81 \mathrm{H}$	102	47
MO-2 thru MO-100	5	$2 \mathrm{Hy}-100 \mathrm{Hy}$	65	25	600 Hz	$\pm 2 \%$ @ $1 \mathrm{~V}, 400 \mathrm{~Hz}$	$\begin{aligned} & +1 \% \\ & -3 \% \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. $75 \times 1.06 \times .81 \mathrm{H}$	102	47

ML Series

ML Case
.438" x.484" x $562^{\prime \prime}$ H
Weight: . 2 oz .
TERMINALS:
Type D - Tinned Dumet .025" Dia. x 1.00" long; MIL-STD 1276
MIL TYPE NO.
TF5RX20ZZ; MIL-T-27

MO Series

MO Case
.750 " $\times 1.062^{\prime \prime} \times .812^{\prime \prime} \mathrm{H}$ Weight: 1 oz .
TERMINALS:
Tinned Dumet
.040" Dia. x $.282^{\prime \prime}$ long;
MIL-STD 1276
MIL TYPE NO.
TF5RX20ZZ; MIL-T-27

MS, MM
 Toroidal Hi-Q Inductors

MS Series

MS Case

.35 " Dia. $\times 23^{\prime \prime}$ high

Weight:

1.3 Gm .

TERMINALS:
Type D - Tinned Dumet .025" Dia. x 1.250 " long; MIL-STD 1276

MIL TYPE NO.
TF5RX20ZZ; MIL-T-27

MM Case
.438" Dia. x $250^{\prime \prime}$ high

Weight:

.07 oz .
TERMINALS:
Type D - Tinned Dumet .025" Dia. x 1.250 " long; MIL-STD 1276

MIL TYPE NO.
TF5RX20ZZ; MIL-T-27

Type No.	MIL Part No.	Ind. mHy (O DC)	ma DC Max.	DCR Ω Max.
MS-1	M27/146-01	1	60	1.4
MS-5	M27/146-02	5	28	7
MS-10	M27/146-03	10	20	11
MS-25	M27/146-04	25	13	38
MS-50	M27/146-05	50	9	75
MS-100	M27/146-06	100	6	132

MM Series

Type No.	MIL Part No.	Ind. mHy (O DC)	ma DC Max.	DCR Max.
MM-1	M27/240-01	3	50	4.8
MM-2	M27/240-02	5	40	8.0
MM-3	M27/240-03	8	30	13
MM-4	M27/240-04	12.5	25	19
MM-5	M27/240-05	20	20	31
MM-6	M27/240-06	30	16	47
MM-7	M27/240-07	60	11	94
MM-8	M27/240-08	120	8	186

Hi-Q Inductors

MH, MW
 Toroidal Hi-Q Inductors

MHSeries

MH CASE

.438" Dia. x 250 " high

Weight:

.07 oz .

TERMINALS:

Type D - Tinned Dumet .025" Dia. x $1.25^{\prime \prime}$ long;
MIL-STD 1276
MIL TYPE NO.
TF5RX2OZZ; MIL-T-27

MW Series

Type No.	MIL Part No.	Ind. Hy $\mathbf{(0 . 0 C)}$	ma DC Max.	DCR $\pm 20 \%$
MW-.05	M27/161-01	0.05	25	27
MW-.10	M27/161-02	0.10	18	51
MW-.25	M27/161-03	0.25	11	136
MW-.5	M27/161-04	0.5	8	243
MW-.75	M27/161-05	0.75	7	355
MW-1	M27/161-06	1.0	6	500
MW-1.2	M27/161-07	1.2	5	560
MW-2	M27/161-08	2.0	4	870
MW-3	M27/161-09	3.0	3.5	1340
MW-5	M27/161-10	5.0	3	2500

MW CASE

.719" Dia. x .406" high
Weight:
.25 oz .
TERMINALS:
Type N-2 - Tinned Nickel .040" Dia. x . $375^{\prime \prime}$ long;
MIL-STD 1276
MIL TYPE NO.
TF5RX20ZZ; MIL-T-27

GENERAL INFORMATION LC and Crystal Filters

Over 50 years of specialization in selective networks, from image parameter design to modern network synthesis are reflected in the superior performance, miniaturization, stability, and reliability of the electric wave filters produced by UTC.

Because of the tremendous variation in requirements of frequency, band width, impedance, shape factor, size configuration, and other special characteristics such as envelope delay distortion, and return loss, catalog items are only a portion of the filters made. Special "custom" designs to customers' specifications range from $D C$ to 30 MHz , from a volume of less than 0.1 cubic inches to more than 250 cubic inches. They cover applications such as telephone, telegraph, telemetering, multiplexing, carrier elimination and restoration, etc.

The general technical discussion that follows applies equally to all varieties of filters. UTC produces a wide range of LC \& Crystal Filters. The following pages introduces a line of Monolithic Crystal Filters (Pages 55 to 57). Crystal Filters offer a practical way of achieving very narrow bandwidths and very sharp rates of cutoff coupled with high precision and stability. This new proven line formerly available on special order is now cataloged on pages 55 to 57 . We invite your review of this product line. We further invite your inquiries for special design LC \& Crystal Filters. Our application staff will be pleased to offer low cost practical solutions to your filter requirements.

TECHNICAL

UTC follows the standard method of measurement of insertion loss and attenuation as defined in MIL-F18327, the military specification for filters.
Insertion Loss is defined as the ratio of power delivered to the load before insertion of the filter, to the power delivered to the load after insertion of the filter.

Rs

$I L_{i n} d b=20 \log _{10} \frac{E_{1}}{E_{2}}$
where
$\mathbf{R}_{\mathrm{s}}=$ Source resistor.
$R_{L}=$ Load resistor.
$\mathrm{Eg}=$ Generator voltage - must be maintained constant for all measurements. The generator impedance should be less than 10% of the source impedance.
$\mathbf{E}_{1}=$ The load voltage with the filter not in the circuit.
$E_{2}=$ The load voltage with the filter in the circuit.

Attenuation, the relative transmission loss, is measured as the ratio output voltage $\left(\mathrm{E}_{2}\right)$ at the reference frequency to the output voltage $\left(E_{3}\right)$ at the test frequency.

Attenuation in $\mathrm{db}=20 \log _{10} \frac{E_{2}}{E_{3}}$
Reference Frequency is that frequency by which the insertion loss is measured and to which all attenuation measurements are referred. In band pass filters, the reference frequency may be the center of the pass band or the frequency at which maximum output occurs. In low pass and high pass filters the reference is a frequency well within the flat portion of the pass band.

On stock, UTC uses the center frequency on band pass filters, $1 / 5$ of the cutoff frequency on low pass filters, and 5 times the cutoff frequency on high pass filters.

Cutoff Frequency is that frequency marking the edge of the pass band. The attenuation at the cutoff frequency can be any number such as .1,3, or 6 db depending upon the specification. The LPM's for example, are specified as 6 db maximum at cutoff frequency.

Pass Band Ripple is the difference from peak to valley of the amplitude response in the pass band measured in db .

Stop Band is that band of frequencies that the filter discriminates against.

GENERAL INFORMATION LC and Crystal Filters

Input Impedance $\mathbf{Z}_{\text {in }}$ is the impedance looking into the filter's input terminals with the filter properly loaded at the output terminals.

Output Impedance $Z_{\text {out }}$ is the impedance looking into the filter's output terminals with the proper resistor across the input terminals.

Neither of these impedances, not to be confused with source and load impedances, should be specified with tolerances unless absolutely necessary. Restricting the actual impedance looking into one end or the other of a filter may complicate the design, increasing size and cost. Adjacent filters that are going to be used in parallel at their inputs or outputs, should be so specified in order to obtain units whose stop band impedances are high and thus have minimal effect on each other.

In general, to reduce size and cost of special filters, the user should be careful not to overspecify. The maximum amount of attenuation and ripple that can be tolerated in the pass band as well as the minimum stop band attenuation should be specified. The flatter the pass band and the sharper the skirt attenuation, the more complex the network and the larger and more expensive the unit becomes.

For special designs the following must be known: source and load impedances, insertion loss, pass band, stop band, operating level, operating temperature range, and size restrictions, plus any other special requirements such as phase matching, insertion loss matching, or attenuation matching between units, envelope delay distortion, return loss limits, etc.

Since filters usually contain many precisely adjusted elements and are used in critical applications where continued reliable performance is a necessity, all UTC filters, both stock and specials, are manufactured and guaranteed to MIL-F-18327.

Units with identical electrical and mechanical characteristics as stock items, except for center frequency on band pass filters, or cutoff frequency on low and high pass filters, are known as stock specials. For example, a band pass filter identical to the BPM series with a center frequency of 2700 Hz would be identified as BPM-2700, a 2700 Hz center frequency band pass filter
identical to the MNF series would be identified as MNF2.7, a low pass similar to LPM series with a 2700 Hz cutoff frequency would be identified as LPM-2700.

For Wide Band Pass applications (more than an octave wide), low pass and high pass filters may be connected in tandem. For instance, the HPM 500 in tandum with the LPM 5000 will be flat within 1 db from 625 Hz to 4000 Hz with an attenuation of 40 db below 300 Hz and above 8250 Hz .

For Band Reject applications, the BPM band pass minifilters may be used by connecting as shown on page , Figure A.

In measuring filters, precautions should be taken to be certain that the test equipment does not affect the measurement. For instance, when the lower stop band of a band pass filter or the stop band of a high pass filter is being measured, the apparent attenuation may be that of the harmonic output of the generator (which may lie in the filter pass band) rather than the actual filter attenuation at the test frequency.

To eliminate this problem the use of a wave analyzer, if available, or another filter which passes the test frequency but rejects its harmonics is recommended.

Generally, on stock filters, variations of $\pm 20 \%$ in the source and load impedances will have negligible effect on the attenuation response. BPM filters may be used with a much lower source impedance and still give satisfactory results.

The nominal test level Eg is 2.0 volts RMS for MNF \& MWF except 0.5 Volt on the BPM and 1.0 Volt on the LPM and HPM.

Superior and consistent performance, stability, and reliability are achieved through meticulous control of all materials and processes during the entire manufacturing cycle from the first sample to each production filter.

Engineering, laboratory and production facilities are available for full engineering discussion, sampling, and large quantity production to meet special requirements.

Filter Selection Guide

STANDARD ELECTRIC WAVE FILTER SELECTION GUIDE Band Pass

Type No .	Center Freq Range	Band WIdth	Source (0hms) (anms)	$\begin{gathered} \text { Load } \\ \text { (Ohms) } \end{gathered}$	$\underset{\text { Grade }}{\substack{\text { MIL }}}$	Operating Temp Range	Size	Weight	Paga
MNF	400 Hz to 5.4 KHz	$\pm 7.5 \%$	10K	10K	7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$1.19 \mathrm{Sq} \times .50 \mathrm{H}$	102	53
MNF	7.35 KHz to 70 KHz	$\pm 7.5 \%$	10K	10K	7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$.72 \mathrm{Sq} \times .50 \mathrm{H}$	$1 / 302$	53
MNF	93 KHz to 165 KHz	$\pm 7.5 \%$	10K	10K	7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.72Sq $\times .35 \mathrm{H}$	1/5 02	53
MWF	22 KHz to 70 KHz	$\pm 15 \%$	10K	10K	7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. $72 \mathrm{Sq} \times .50 \mathrm{H}$	1/302	53
HWF	93 KHz to 165 KHz	$\pm 15 \%$	10K	10K	7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. $72 \mathrm{Sq} \times .35 \mathrm{H}$	$1 / 502$	53
BPM	400 Hz to 20 KHz	$\pm 3 \%$	10K	10K or Grid	6	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$.72 \mathrm{Sq} \times 1.13 \mathrm{H}$	102	54

Band Reject

Type No.	Freq Range	Source (Ohms)	Load (Ohms)	MIL Grade	Oparatlng Temp Range	Size	Weight	Page
BPM	400 Hz to 20 KHz	10 K	10 K	6	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$.75 \mathrm{Sq} \times 1.13 \mathrm{H}$	10 oz	54

Low Pass

| Type Ko. | Cutoff Freq Range |
 Load (Ohms) | Grade | Operating
 Temp Range | Size | Welght | Rage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LPM | 6 KHz to 15 KHz | 10 K | 6 | $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | $.75 \mathrm{Sq} \times 1.13 \mathrm{H}$ | 10 Cl | 54 |
| LPM | 200 Hz to 5 KHz | 10 K | 6 | $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ | $1 \mathrm{Sq} \times 1.38 \mathrm{H}$ | $21 / 402$ | 54 |

High Pass

Type No.	Cutoff Freq Range	 Load (Ohms)	MIL Grade	Operating Temp Range	Slze	Welght	Page
HPM	500 Hz to 4 KHz	10 K	6	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$1 \times 1 \times 1.38 \mathrm{H}$	$21 / 40 \mathrm{OZ}$	54

CRYSTAL FILTERS

Band Pass

Type No.	$\begin{gathered} \text { Center } \\ \text { Freq Range } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Band } \\ & \text { Whdth } \end{aligned}$	$\begin{aligned} & \text { Saurce } \\ & \text { (Ohms) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Load } \\ \text { (Ohms) } \end{gathered}$	$\begin{gathered} \mathrm{MILL} \\ \text { Grade } \end{gathered}$	$\begin{gathered} \hline \text { Operating } \\ \text { Temp Range } \\ \hline \end{gathered}$	Size	Weight	Page
MF	10.7 MHz	$\begin{aligned} & .07 \% \\ & .00 \\ & .28 \% \end{aligned}$	$\begin{gathered} \hline 1.5 \mathrm{~K} \\ \text { to } \\ 5 \mathrm{~K} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \mathrm{~K} \\ \text { to } \\ 5 \mathrm{~K} \\ \hline \end{gathered}$	4	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { See Page } \\ 55 \end{gathered}$		56
MF	21.4 MHz	$\begin{gathered} .035 \% \\ 10 \\ .14 \% \end{gathered}$	$\begin{aligned} & 1 K \\ & \text { to } \\ & 3 K \end{aligned}$	$\begin{gathered} 1 K \\ \text { to } \\ 3 K \end{gathered}$	4	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{Co} \end{aligned}$	$\begin{gathered} \text { See Page } \\ 55 \end{gathered}$		57

Telemetering Band Pass Filters

Type No.	Center Freq. (KHz)	Type No.	Center Freq. (KHz)
MNF-.4	.4	MNF-40	40
MNF-56	.56	MNF-52.5	52.5
MNF-.73	.73	MNF-70	70
MNF-.96	.96	MNF-93	93
MNF-1.3	1.3	MNF-124	124
MNF-1.7	1.7	MNF-165	165
MNF-2.3	2.3		
MNF-3.0	3.0	MWF-22	22
MNF-3.9	3.9	MWF-30	30
MNF-5.4	5.4	MWF-40	40
MNF-7.35	7.35	MWF-52.5	52.5
MNF-10.5	10.5	MWF-70	70
MNF-14.5	14.5	MWF-93	93
MNF-22	22	MWF-124	124
MNF-30	30	MWF-165	165

ATTENUATION CHART

Type No.	Pass Band Width (less than 3 db)	Stop Band
MNF	$\pm 71 / 2 \%$	15 db min @ $\pm 25 \%$
		40 db min @ 1.75 Fc
		.58 Fc
MWF	$\pm 15 \%$	15 db min @ $\pm 50 \%$
		40 db min @ 2.5 Fc
		4 Fc

MNF-7.35 thru MNF-70, MWF-22 thru MWF-70
$.781^{\prime \prime}$ sq. $\times .500^{\prime \prime}$ high WEIGHT: $1 / 3 \mathrm{oz}$.

MNF-. 4 thru MNF-5.4
$1.188^{\prime \prime}$ sq. $\times 500^{\prime \prime}$ high WEIGHT: 1 oz .

MNF-93 thru MNF-165,
 MFW-93 thru MWF-165

$.781^{\prime \prime}$ sq. $\times .35^{\prime \prime}$ high
WEIGHT: $1 / 5 \mathrm{oz}$.
LEADS:
.025" Dia. x 1.00"; Type N-2, Tinned Nickel, MIL-STD-1276

PACKAGING

All hermetically sealed. MNF and MWF units metal cased, epoxy terminal board with pin terminals.

NOTES

The low potential connections (2 and 3 on MNF and MWF) are brought out to individual terminals so that input and output may be used at different DC potentials if desired.

MIL SPECS

All to complete MIL-F-18327
Specs. MNF and MWF:
FR7RX22ZZ1.

IMPEDANCES

MNF and MWF 10K ohms
source and load.

SPECIALS

MNF and MWF filters can be obtained with special center frequencies form 400 Hz to 200 KHz .

Leads: . 025 Dia. x 1.00" Type $\mathrm{N}-2$, Tinned Nickel,
MIL-STD-1276

LPM, BPM and HPM Miniature Band High and Low Pass Filters

BPM case

$.750^{\prime \prime} \times .750^{\prime \prime} \times 1.125^{\prime \prime}$
Weight: 1 oz .

CONNECTIONS FOR
BAND REJECT APPLICATIONS

HPM and LPM case (MIL AG)
$1.00^{\prime \prime} \times 1.00^{\prime \prime} \times 1.375^{\prime \prime}$
Weight:
$21 / 4 \mathrm{oz}$.

LPM-6000 or
higher (MIL AF)
$.750^{\prime \prime} \times .750^{\prime \prime} \times 1.125^{\prime \prime}$
Weight:
1 oz .

BPM SERIES

PACKAGING

Hermetically sealed. Standard MIL metal cases. Straight pin terminals. Shielded to reduce hum pick-up.

MIL SPECS

To complete MIL-F-18327 Specs. Grade 6, Class R, Life X.
BAND REJECT
BPM units are designed for both band pass and band reject applications. For band reject connect as in fig. A.
WIDE BAND PASS APPLICATIONS
The HPM and LPM may be connected in tandem. For example, the HPM-500 in tandem with the LPM-5000 will be flat within 1 db from 625 Hz to 4000 Hz with an attenuation of 40 db at 300 Hz and 8250 Hz .

| | Center
 Frequency
 (Hz) | Pass Band
 Type No.
 Less than 2 db)
 (Hz) | Stop Band
 (more than 35 db) |
| :--- | :---: | :---: | :---: | :---: |
| Below (Hz) | Above (Hz) | | |

BAND PASS

MIL TYPE FR6RX22AF1
BPM's source 10 K ohms; load 10 K ohms or grid. Grid output gives 2:1 gain.

NOTE:

Special BPM filters with center frequency of 30 KHz to 200 KHz are available with 10,000 ohms load only, these have three terminals.

TYPICAL BAND REJECT RESPONSES

STOCK SPECIAL LPM units available from 200 Hz to 25 KHz ; HPM units available from 500 Hz to 25 KHz .

HIGH PASS
MIL TYPE FR6RX33AG1. HPM 10K ohms source and load.

Type No.	Pass Band (less than 6 db) (Hz) \& above	Stop Band min db @ (Hz)	
HPM-500	500	30	333
		40	250
HPM-1000	1000	20	667
		40	500
HPM-4000	4000	30	2680
		40	2000

1 KHz-100 MHz Crystal Filters

OPT/UTC manufacturing capabilities for monolithic and discrete crystal filters cover the frequency range of 1 KHz to 100 MHz .

Frequency ranges available:

1. Monolithic Type
$4-45 \mathrm{MHz}$ with relative bandwidth range from $.04 \%$ to 0.3% of center frequency.
2. Discrete Type
$1 \mathrm{KHz}-100 \mathrm{MHz}$ with relative bandwidth range from $.01 \%$ to 2% of center frequency.
3. Single Side Band Type
$.1-15 \mathrm{MHz}$.
The monolithic crystal filters shown on the succeeding pages catalog some of the most popular designs in center frequencies of 10.7 and 21.4 MHz with channel spacings of $12.5,20,25$ and 50 KHz . Other monolithic crystal filters with the foregoing channel spacings are available in center frequencies of $5.0,5.2,11.5,12.5$ and 16.9 MHz . These filters feature low insertion loss, excellent VSWR and steep skirt selectivity. The designs are based on .1 dB Chebychev response. Custom designs are available using linear phase, constant delay, Bessel and Gaussian response.

The normalized selectivity curves apply to conventional "all-pole" structures. By using modern synthesis techniques, it is possible to reduce the number of crystals needed to achieve a specified shape factor.

CASE	H MAX.	MAX.	WAX.	A	D	M MIN.	P	S
10	.590	.590	.472	.355	.018	.250	.160	.096
11	.590	.730	.472	.530	.018	.250	.160	.096
15	.455	.435	.335	.291	.014	.250	.160	.075
16	.455	.531	.335	.386	.014	.250	.160	.075

CASE 22

MF
 10.7 MHz Monolithic Crystal Filters

12.5 KHz CHANNEL SPACING

PART NUMBER	POLES	PASSBAND			STOPBAND		LOSS		$\begin{gathered} \text { RIPPLE } \\ \hline \mathrm{dB} \\ \hline \end{gathered}$	$\frac{\text { SPURIOUS }}{\mathrm{dB} \text { (MIN.) }}$	ULT. REJ. dB (MIN.)	$\begin{gathered} \mathrm{Z} \text { IN/Z OUT } \\ \hline \text { OHM/PF } \\ \hline \end{gathered}$	CASE
		dB	KHz	dB	KHz	dB	KHz	dB					
MF9000	2	3	± 3.75	20	± 18	-	-	1	1	20	50	1.5K//2	03
MF9001	4	3	± 3.75	40	± 14	-	-	2	1	35	70	1.5K//2	2×03
MF9002	6	3	± 3.75	60	± 12.5	-	-	3	2	60	80	1.5K//2	10
MF9003	8	3	± 3.75	60	± 10	90	± 12.5	4	2	80	90	1.5K//2	11
MF9004	8	3	± 3.75	60	± 10	90	± 12.5	4	2	80	90	910//25	22

20.0 KHz CHANNEL SPACING

PART NUMBER	POLES	PASSBAND			STOPBAND		LOSS		$\frac{\text { RIPPLE }}{\mathrm{dB}}$	$\begin{aligned} & \hline \text { SPURIOUS } \\ & \hline \mathrm{dB} \text { (MIN.) } \end{aligned}$	$\frac{\text { ULT. REJ. }}{\mathrm{dB} \text { (MIN.) }}$	$\frac{\mathrm{Z} \text { INIZ OUT }}{\text { OHM/PF }}$	CASE
		dB	KHz	dB	KHz	dB	KHz	dB					
MF9010	2	3	± 6.0	20	± 25	-	-	1	1	15	50	2.7K//0	03
MF9011	4	3	± 6.0	40	± 20	-	-	2	1	35	70	2.7K//0	2×03
MF9012	6	3	± 6.0	65	± 20	-	-	3	2	60	80	$2.7 \mathrm{~K} / 10$	10
MF9013	8	3	± 6.0	65	± 14	90	± 20	3.5	2	80	90	2.76/10	11
MF9014	8	3	± 6.0	65	± 14	90	± 20	3.5	2	80	90	910//25	22

25.0 KHz CHANNEL SPACING

$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \end{aligned}$	POLES	PASSBAND			STOPBAND			$\frac{\text { LOSS }}{d B}$	$\frac{\mathrm{RIPPLE}}{\mathrm{~dB}}$	$\begin{aligned} & \text { SPURIOUS } \\ & \hline \mathrm{dB} \text { (MIN.) } \end{aligned}$	$\frac{\text { ULT. REJ. }}{\mathrm{dB} \text { (MIN.) }}$	$\begin{gathered} \mathrm{Z} \text { IN/Z OUT } \\ \hline \text { OHM/PF } \end{gathered}$	CASE
		dB	KHz	dB	KHz	dB	KHz						
MF9020	2	3	± 7.5	20	± 35	-	-	1	1	15	50	3.0K//0	03
MF9021	4	3	± 7.5	40	± 25	-	-	2	1	35	70	3.5K//0	2×03
MF9022	6	3	± 7.5	60	± 22.5	-	-	3	2	60	80	3.5K//0	10
MF9023	8	3	± 7.5	70	± 17	90	± 25	3.5	2	80	90	3.5K//0	11
MF9024	8	3	± 7.5	70	± 17	90	± 25	3.5	2	80	90	910//25	22

50.0 KHz CHANNEL SPACING

PART NUMBER	POLES	PASSBAND			STOPBAND			$\begin{gathered} \text { LOSS } \\ \hline \mathrm{dB} \\ \hline \end{gathered}$	$\begin{gathered} \text { RIPPLE } \\ \hline \mathrm{dB} \\ \hline \end{gathered}$	$\begin{aligned} & \text { SPURIOUS } \\ & \hline \mathrm{dB} \text { (MIN.) } \end{aligned}$	$\begin{aligned} & \hline \text { ULT. REJ. } \\ & \hline \mathrm{dB} \text { (MIN.) } \end{aligned}$	$\frac{\mathrm{Z} \mathrm{IN/Z} \mathrm{OUT}}{\text { OHM/PF }}$	CASE
		dB	KHz	dB	KHz	dB	KHz						
MF9030	2	3	± 15	15	± 30	-	-	1	1	10	35	5.0K/10	03
MF9031	4	3	± 15	30	± 35	-	-	2	2	30	60	5.0K//0	2×03
MF9032	6	3	± 15	60	± 45	-	-	3	2	60	80	5.0K//0	10
MF9033	8	3	± 15	60	± 30	80	± 40	4	2	80	90	5.0K/10	11
MF9034	8	3	± 15	60	± 30	80	± 40	4	2	80	90	910/22	22

[^8]21.4 MHz Monolithic Crystal Filters

12.5 KHz CHANNEL SPACING

$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \\ & \hline \end{aligned}$	POLES	PASSBAND			STOPBAND			$\frac{\text { LOSS }}{\mathrm{dB}}$	$\frac{\text { RIPPLE }}{\mathrm{dB}}$	SPURIOUS dB (MIN.)	ULT. REJ. dB (MIN.)	$\frac{\mathrm{Z} \mathrm{IN/Z} \mathrm{OUT}}{\text { OHM/PF }}$	${ }_{\text {CASE }}^{* *}$
		dB	KHz	dB	KHz	dB	KHz						
MF9100	2	3	± 3.75	20	± 18	-	-	1.5	1	15	50	1.0K//2	02
MF9101	4	3	± 3.75	40	± 14	-	-	2.5	1	30	70	1.0K//2	2X02
MF9102	6	3	± 3.75	60	± 12.5	-	-	3	2	60	80	1.0K//2	15
MF9103	8	3	± 3.75	60	± 10	80	± 12.5	4	2	80	90	1.0K//2	16
MF9104	8	3	± 3.75	60	± 10	80	± 12.5	4	2	80	90	910//25	22

20.0 KHz CHANNEL SPACING

PARTNUMBER	POLES	PASSBAND			STOPBAND			$\begin{gathered} \text { LOSS } \\ \hline \mathrm{dB} \end{gathered}$	$\frac{\text { RIPPLE }}{\mathrm{dB}}$	$\frac{\text { SPURIOUS }}{\mathrm{dB} \text { (MIN.) }}$	$\frac{\text { ULT. REJ. }}{\mathrm{dB} \text { (MIN.) }}$	$\frac{\mathrm{Z} \mathrm{IN/Z} \mathrm{OUT}}{\frac{\text { OHM/PF }}{}}$	CASE
		dB	KHz	dB	KHz	dB	KHz						
MF9110	2	3	± 6.0	20	± 25	-	-	1.5	1	15	45	1.4K//0	02
MF9111	4	3	± 6.0	40	± 22.5	-	-	2	1	30	70	1.4K//0	2×02
MF9112	6	3	± 6.0	60	± 22.5	-	-	3	2	60	80	1.4K/0	15
MF9113	8	3	± 6.0	60	± 14	80	± 20	4	2	80	90	1.4K/0	16
MF9114	8	3	± 6.0	60	± 14	80	± 20	4	2	80	90	910/25	22

25.0 KHz CHANNEL SPACING

$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \end{aligned}$	POLES	PASSBAND			STOPBAND			$\frac{\text { LOSS }}{\mathrm{dB}}$	$\begin{aligned} & \text { RIPPLE } \\ & \hline \mathrm{dB} \\ & \hline \end{aligned}$	$\frac{\text { SPURIOUS }}{\mathrm{dB} \text { (MIN.) }}$	ULT. REJ. dB (MIN.)	$\begin{gathered} \hline \mathrm{Z} \text { IN/Z OUT } \\ \hline \text { OHM/PF } \\ \hline \end{gathered}$	$\underset{* *}{\text { CASE }}$
		dB	KHz	dB	KHz	dB	KHz						
MF9120	2	3	± 7.5	20	± 30	-	-	1.5	1	15	45	$1.6 \mathrm{~K} / 10$	02
MF9121	4	3	± 7.5	40	± 25	-	-	2	1	30	70	1.6K//0	2×02
MF9122	6	3	± 7.5	60	± 25	-	-	3	2	60	80	1.6K//0	15
MF9123	8	3	± 7.5	60	± 20	80	± 22	4	2	80	90	1.6K//0	16
MF9124	8	3	± 7.5	60	± 20	80	± 22	4	2	80	90	910//25	22

50.0 KHz CHANNEL SPACING

PARTNUMBER	POLES	PASSBAND			STOPBAND		KHz ${ }^{\mathbf{c}}$ LoSS		$\frac{\text { RIPPLE }}{\mathrm{dB}}$	$\begin{array}{\|l\|} \hline \text { SPURIOUS } \\ \hline \mathrm{dB} \text { (MIN.) } \\ \hline \end{array}$	ULI. REJ. dB (MIN.)	$\begin{gathered} \hline \mathrm{Z} \mathrm{IN/Z} \mathrm{OUT} \\ \hline \text { OHM/PF } \\ \hline \end{gathered}$	$\stackrel{\text { CASE }}{* *}$
		dB	KHz	dB	KHz	dB							
MF9130	2	3	± 15	20	± 45	-	-	1	1	10	40	3.0K//0	02
MF9131	4	3	± 15	40	± 50	-	-	2	1	25	60	$3.0 \mathrm{~K} / 10$	2×02
MF9132	6	3	± 15	60	± 45	-	-	3	2	45	80	3.0K//0	15
MF9133	8	3	± 15	60	± 35	80	± 45	4	2	70	90	$3.0 \mathrm{~K} / 10$	16
MF9134	8	3	± 15	60	± 35	80	± 45	4	2	70	90	910//25	22

[^9]*These filters are available in the 10.7 MHz cases

SHAPE FACTOR VS NUMBER OF POLES
The normalized selectivity of OPT/UTC 2 to 10 pole crystal filter designs

OPT Industries, founded in 1972, has grown steadily from a small handful of employees to a well-trained, highly efficient work force of nearly 500 today. Our facilities occupy over 100,000 square feet in Phillipsburg, New Jersey, New York City, and Athens, Greece. In addition, OPT operates a Research and Development Center in Orlando, Florida.

Our product lines include transformers, crystal filters, LC filters, monolithic filters, linear power supplies, switching power supplies, and data communication and networking products such as baluns, adaptors, cable assemblies and multiplexers.

OPT's reputation for engineering, quality and manufacturing expertise has enabled us to become a supplier to many of the nation's major military programs, and to some of the largest, most advanced computer manufacturers, telecommunications firms and industrial producers.

Our recent acquisition of the UTC Division of TRW has greatly expanded our transformer design and manufacturing capabilities. This, plus a strong QPL position and a nationwide distributor network has greatly enhanced our ability to serve our customers.

Modern techniques such as computerized automatic testing of transformers, CAD/ CAM systems, automatic circuit board testing for power supplies, as well as computer aided design, have enabled OPT to become a leader in customized magnetics as well as state of the art high power, high density power supplies.

OPT has its own in-house environmental testing laboratory which allows us to do our own qualification to MIL-T-27, MIL-F-18327, and MIL-T-21038. We have also been qualified to do in-house testing to CSA specifications. We hold many QPL approvals for both transformers and filters. In addition, we have a UL yellow card and manufacture to UL 544 as well as UL, CSA and VDE specifications.

OPT's Data Products Division manufactures a comprehensive line of data communications components which provide maximum capability and flexibility to cabling systems and networks. Available in a wide variety of configurations are an extensive line of economical baluns, adaptors, connectors, cable assemblies and multiplexers which make system installations, changes and moves easy and convenient.

The OPT Power Conversion Division serves the military, commercial, computer, and communications markets. The high current needs of super computers and large mainframes are met by our unique 100 KHz current controlled designs with either forced air cooling, conduction cooling, or nitrogen and fluorinert cooling systems. Our demonstrated 240,000 hours MTBF and $\mathrm{N}+1$ system hook-up make OPT a leader in the high power conversion systems.

In the low power range where space is a premium, our MICROSWITCH ${ }^{\text {TM }}$ line, which uses our patented 1 MHz resonant converter technology, allows a low profile of 0.86 inches at the 100 watt level in both single and multiple output units.

Creative engineering and reliability are the trademarks of OPT power supplies.
The OPT Quality Assurance Program complies with MIL-I-45208 with provisions for meeting MIL-Q-9858A or NHB5300.4 when required. Our calibration system meets the requirements and has been approved by DCASR to MIL-STD-45662.
During our growth, OPT has acquired many widely known companies in the magnetics industry. Among them are Nytronics-Transformer and Filter Divisions, Omnitec, Bulova Filter Division, Burnell, Ortho Industries, Filtech, and most recently the UTC Division of TRW. As a result, we have gained access to many thousands of design and manufacturing specifications, and all products previously built by these companies are available from OPT.

We are very proud of our customer list, which includes most of the 25 largest electronic manufacturers in the country. We think this is a tribute to a competent and dedicated work force.

DATA COMMUNICATIONS PRODUCTS Data Products Capability

OPT's Data Products Division manufactures a full line of Data Communications Products designed to attach a broad assortment of computers and peripheral equipment to various cabling systems and Local Area Networks.

OPT baluns, cable assemblies, patch panels, multiplexers and adaptors are available in a wide variety of standard and custom configurations.

Whether you use IBM, DEC, WANG or
compatible equipment, and want to transmit over the IBM Cabling System - unshielded twisted pairs - coax - twinax or other type of cable, there is an OPT product that will enable you to do it better, more conveniently and at less cost.

If one of our standard products can't do that for you, we can design one to fit your application.

Contact OPT's Data Products Division.

1-800-453-2580 (For Data Products Division only.)

POWER SUPPLY CAPABILITY

SP-R

The OPT SP-R Series, high current 1500 and 2500 watt 100 KHz switching power supplies. $1 \emptyset ; 3 \emptyset$ and 210 to 325 VDC inputs standard. Current mode control, $\mathrm{N}+1$ automatic current sharing. Fan cooled and conduction units. FCC level " A ", UL, CSA, IEC recognized.
1500 watt $-5^{\prime \prime} \times 8^{\prime \prime} \times 11.5^{\prime \prime}-2500$ watt $-5^{\prime \prime} \times 8^{\prime \prime} \times 13.5^{\prime \prime}$.

Microswitch
 Mode ${ }^{\text {TM }}$

The OPT MICROSWITCH MODE ${ }^{\mathrm{m}}, 750 \mathrm{KHz}$ and 1 mHz AC and DC input switchers. AC input units available in 50 watt and 100 watt triple output in case sizes $0.875^{\prime \prime} \times 4^{\prime \prime} \times 6^{\prime \prime}$ and $0.875^{\prime \prime} \times 4.5^{\prime \prime} \times 8^{\prime \prime}$. DC inputs of 42 to 60 with single, dual and triple outputs of 50,75 and 100 watts in $0.875^{\prime \prime} \times 4.5^{\prime \prime} \times 3.75^{\prime \prime}$ and $0.475^{\prime \prime} \times 4.5^{\prime \prime} \times 2.40^{\prime \prime}$ offering up to 20 watts a cubic inch.

Titan

Switcher

World
 Linear

DC-DC

Converters

Custom
 Capability

Military
 Power Supplies

OPT Industries advanced design capabilities and MIL approved inspection and quality system coupled with in-house testing capability allow us to provide hi-reliability power supplies to the military stringent needs.

SIZE vs. POWER

A Method for Determining Approximate Sizes Obtainable for VA Power Ratings

Transformer and Choke Sizes for Military and Industrial Products

MIL SIZES

The following chart shows the obtainable VA power available in the MIL case sizes listed below. Use this handy reference guide for your size versus power planning. For chokes, see the Ll^{2} values in the last column.

$\begin{aligned} & \text { CASE } \\ & \text { TYPE } \end{aligned}$	CASE DIMENSIONS			MOUNTING DIMENSIONS			VA RATINGS		APPROX. WGHT. (Lbs.)	$\mathbf{L l}^{2}$
	A	B	C	D	E	F	60	400		
AF	.750"	750"	$1.012^{\prime \prime}$. 562	iagonal	$4.40 \times .375^{\prime \prime}$	1	2-4	Wart. (Lbs.)	Li
${ }^{\text {AG }}$	1.0	1.0	1.375	.750	iagonal	$4.40 \times .375$	2	4.8	. 15	-
AH	1.312	1.312	1.750	1.25	iagonal	$6-32 \times .375$	4	8-16	. 35	
AJ	1.625	1.625	2.375	1.187	1.187	$6.32 \times .375$	6	12-24	. 80	. 01
EA	1.937	1.812	2.750	1.375	1.250	$6-32 \times .375$	10	20-40	1.3	. 02
EB	1.937	1.812	2.437	1.375	1.250	$6-32 \times .375$	8	16-32	1.1	. 03
FA	2.312	2.062	3.125	1.687	1.437	$6.32 \times .375$	20	40-80	1.9	. 04
FB	2.312	2.062	2.500	1.687	1.437	$6-32 \times .375$	15	30-60	1.5	. 06
GA	2.750	2.375	3.812	2.125	1.750	$6-32 \times .375$	35	70-140	3.0	. 08
GB	2.750	2.375	2.812	2.125	1.750	$6.32 \times .375$	25	50-100	2.3	. 10
HA	3.062	2.625	4.250	2.296	1.859	$8.32 \times .375$	50	100-200	4.3	14
HB	3.062	2.625	3.187	2.296	1.859	$8.32 \times .375$	38	75-150	3.2	. 18
JA	3.562	3.062	4.875	2.625	2.125	$8-32 \times .375$	75	150.300	6.8	
JB	3.562	3.062	3.875	2.625	2.125	$8-32 \times .375$	60	$120-240$	5.3	. 30
KA	3.937	3.375	5.250	3.00	2.437	10-32 $\times .500$	100	200-400	8.7	. 40
KB	3.937	3.375	4.312	3.00	2.437	$10-32 \times .500$	85	170-340	7.2	. 50
LA	4.312	3.687	5.562	3.312	2.687	$10.32 \times .500$	140	280-560	11	
LB	4.312	3.687	4.500	3.312	2.687	$10-32 \times .500$	110	220-440	9	. 70
MA	4.687	4.00	6.00	3.687	3.00	. $250-20 \times .625$	180	360-720	16	
MB	4.687	4.00	4.937	3.687	3.00	. $250-20 \times .625$	150	$300-600$	13	90
NA	5.062	4.312	6.812	4.062	3.312	. $250-20 \times .625$	250	500-1000	19	
NB	5.062	4.312	5.500	4.062	3.312	. $250-20 \times .625$	200	400-800	16	1.50
OA	5.500	4.500	6.750	3.750	3.00	. $250-20 \times .625$	350	700-1400	22	2.0

COMMERCIAL/INDUSTRIAL SIZES

This chart should be used for open frame industrial/commercial open core transformers and chokes. Both lamination stack sizes and lamination sizes are shown. Use the Ll^{2} column for approximate choke sizes.

SIZE		VA AND LI RATINGS $50^{\circ} \mathrm{C}$ RISE				REGULATION60 Hz
		VA	VA	VA*		
STACK	LAMIN.	50 Hz	60 Hz	400 Hz	Ll^{2}	
0.375	E1-375	2.8	3.4	7.10	. 011	30\%
0.750	E1-375	5.6	6.8	10-20	. 022	20
0.500	E1-21	5.6	6.7	10-20	. 021	21
1.000	E1-21	11.2	13.4	20.40	. 042	14
${ }^{0.625}$	E1.625	10.4	12.5 250	$20-40$ $40-80$. 040	14.8
0.750	E1.75	20.0	24.0	$40-80$	085	
1.500	E1.75	40.0	48.0	75.150	170	7.4
0.875	E1-87	34	41	60-120	146	9.0
1.750	E1-87	68	82	100-200	292	6.2
1.000	E1.100	55	66	90-120	253	7.0
2.000	El-100	110	132	170-340	. 506	4.8
1.125	El.112	86	103	140-280	413	5.9
2.250	El.112	172	206	280-560	. 826	4.0
1.250	E.1.125	120	145	$200-400$	629	5.0
2.500	El-125	240	290	$400-800$	1.258	3.4
${ }_{1}^{1.775}$	E.1.38	${ }^{180}$	200	${ }^{300.600}$. 90	4.5
2.750	El-138	360	400	500-1000	1.80	3.1
1.500	E.1.150	250	275	275.750	1.21	4.0
3.000	E1.150	500	550			
1.750	E.175	370	400	600-1200	2.16	3.1
3.500	El-175	740	800	1000-2000	4.32	2.2
2.125	E1.212	650	700	900-1800	4.29	2.7
4.250	E1-212	1300	1400	2000-4000	8.58	1.8
2.250	E1.225	780	850	$1000-2000$	5.27	2.56
4.500	E1-225	1560	1700	2400-4800	10.54	1.75
2.500	E1.250	1080	1175 2350	1400-2800	7.95 1590	2.25
5.000	E1-250	2160	2350	2700-5000	15.90	1.55

[^10]
NOTES AND

TOLERANCES

1. Tolerances on dimensions A and B are +0 to -0.062 for cases AF, AG, AH and $\mathrm{AJ} ;+0$ to -0.125 for all other cases.
2. Tolerances on dimension C are +0 to -0.125 for cases AF, AG, AH, AJ; + 0 to -0.187 for all other cases.
3. Tolerances on dimensions D and E are ± 0.015 for cases $A J$ to $J \bar{B}$, inclusive; ± 0.031 for cases KA to LB, inclusive; and ± 0.046 for cases MA to OA, inclusive.
4. Screw-stud lengths are measured from the mounting surface and have a length tolerance of ± 0.062 on studs $0.500^{\prime \prime}$ long or less, and ± 0.125 on studs over $0.500^{\prime \prime}$ long.
VA ratings are based on a two winding transformer and normal operating voltages, with a 40 degree C temperature rise over a 65 degree C ambient. When there are three or more windings or high operating voltages, the VA ratings will decrease.
This table is for use merely as a guide for estimating size. By use of special materials, it is sometimes possible to greatly reduce the size of a unit. However, this generally increases price.
The higher VA ratings for 400 Hz are based on . 004 in . Silectron.

UL Safety Standards Capability

Building the highest quality transformers to UL Standards for more than 5 decades.

UTC has been a leader in the design and manufacture of high quality electronic transformers for more than 55 years. During that time it has gained extensive experience in building thousands of products to applicable UL Standards and has met the safety requirements of other leading standards' bureaus throughout the world.

We have the capability and experience to design and manufacture transformers to meet the UL Standards listed below:
UL 455 Electrical, medical and dental equipment
506 Specialty transformers
697 Toy transformers
1012 Power Supplies
1310 Direct plug-in transformers
1411 Transformers and motor transformers for use in audio, radio and television-type appliances
1459 Telephone equipment
1561 Large general purpose transformers
1585 Class 2 and Class 3 transformers

UL 1446 System of Insulating Materials

In addition to the foregoing standards, the UTC has many years of experience in the manufacture of transformers to UL Standard 1446, which applies to insulation systems used in transformers. Many products such as data processing and office equipment, telephone, fire control, medical lighting and other medical items, where safety is a consideration, are subject to UL 1446.

In meeting these requirements, particular attention is paid to dielectric strength and leakage current. The insulation
class is determined by the ambient temperature and temperature rise of the transformer. Other important considerations are the inter and intra winding insulation, creepage, spacing and clearance between windings, winding to windings, and to the core or ground.

Double insulation is required for certain applications and insulation resistance can become a major consideration under these circumstances.

UTC has Underwriters Laboratories insulation class approvals from $130^{\circ} \mathrm{C}$ to $220^{\circ} \mathrm{C}$ in various insulation and impregnants. Our yellow card file number is E57605.

UTC welcomes inquiries regarding applications which require UL approval. Our facility is equipped and UL-approved to perform many of the mandated UL tests. This unique capability makes it possible for us to submit our customers' test report findings directly to Underwriters Laboratories for approval.

Other Standards.

Canadian Standards Association requirements for safety are similar to those defined by Underwriters Laboratories Inc. UTC welcomes the opportunity to serve the needs of manufacturers whose products must conform to CSA requirements.

In addition, UTC will meet or exceed the safety requirements of the VDE. In general, conformance to this specification will require a slightly larger transformer because of the increased creepage, clearance distances, minimum insulation layers and thickness, and higher dielectric strength, up to 3750 V .

When you're building products which must conform to UL, CSA or VDE requirements, you can depend upon UTC. Our knowledge, experience and capability are your assurance of professionalism and economy in the solution of your transformer design and performance problems.

MIL Type Designations

MILITARY GENERAL SPECIFICATIONS, MILITARY TYPE DESIGNATIONS, MILITARY STANDARD DRAWINGS, MILITARY SLASH/SHEETS AND QUALIFIED PRODUCTS LISTS

Federal Supply Code for Manufacturers (FSCM No. 80223 is assigned to UTC).

UTC military products are made to the latest revisions of either MIL-T-27 (transformers and inductors), MIL-F-18327 (electric wave filters), or MIL-T-21038 (pulse transformers).

Each of these specifications make use of its own MIL Type Designation, which is essentially a shorthand description of the item. However, the MIL Type Designation will not fully describe an item without a statement of its electrical characteristics and, where necessary, a dimensional drawing. Therefore, for ordering purposes, you must specify the UTC Part Number in addition to the Type Designation. A condensed outline of MIL Designations is presented on page 64 for your reference.

The Department of Defense has phased out the use of the previous standard part documents, e.g., M.S. sheets (Military Standards) and MIL Type Designations with the three-digit suffix to describe a discrete specific part.

The general component specifications MIL-T-27, MIL-F-18327 and MIL-T-21038 now have supplementary documents known as slash/sheets, which are drawings completely describing the standard parts. The slash/sheets are prefixed with the number of the related specification, such as M27/104-001, M18327/018-001 or M21038/ 8-001.

However, OEMs are not restricted to the usage of slash/sheet standard parts. If a new or different application requires a new or different part it can be custom designed
as previously, with all general visual, mechanical, environmental and electrical requirements governed by the applicable military general component specifications.

The slash/sheet itself does not list the qualified manufacturer. To determine this information, refer to the related QPL, look up the particular slash/sheet number and the qualified manufacturer will be listed.

The MIL Type Designation (less the three-digit suffix) does not describe a specific part - only a general family type. Refer to the charts on the following page for information obtained from the military type designations.

If the part and the drawing have TF designations that appear in conflict, refer to the cross-index chart listed in paragraph 6.16 of MIL-T-27.

Each of these three specifications contains a requirement for qualification and a procedure for obtaining qualification by reason of similarity to a qualified part. All parts qualified to each specification appear on the appropriate Qualified Products List, e.g. QPL-27, QPL-18327, QPL-21038. If a desired item does not appear on the QPL, it still may be qualified by similarity, provided the manufacturer has an acceptable similar part qualified.

The determining factors considered in an extension of qualification are many and complex. Guidance by similarity appears in paragraph 20.2 and Figure 18 of MIL-T-27, paragraph 20.3 and Figure 10 of MIL-F18327 and paragraph 20.3 and Figure 10 of MIL-T-21038. This information can be obtained from the manufacturer. Obviously, a manufacturer with an extensive listing on the QPL is in a far better position to save the user time and high test costs than one with no listings, or with only a few parts listed.

Copies of the General Military Specifications, slash/sheets and Qualified Products Lists mentioned above may be obtained by manufacturers from:
U.S. Navy Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA, 19120.

Examples of Military Type Designations

MIL-T-27-Military Specifications for Transformers and Inductors (Audio and Power)

TF	4	R	03	FA
COMPONENT	GRADE	CLASS	FAMILY	CASE OR ENVELOPE SIZE AND MOUNTING
All MIL-T-27D transformers or inductors	Refers to case material and environmental capability e.g., Grade $4=$ Metal cased. Max. reliability. Resistant to shock, vibration and thermal shock. Grade 5 = Same as Grade 4 except encapsulated or molded. Grade 6 = Open type for subsequent potting by OEM.	Indicative of max. operating temp. (ambient plus temperature rise) e.g., $\begin{aligned} & \mathrm{Q}=85^{\circ} \mathrm{C} \\ & \mathrm{R}=105^{\circ} \mathrm{C} \\ & \mathrm{~S}=130^{\circ} \mathrm{C} \\ & \mathrm{~V}=155^{\circ} \mathrm{C} \\ & \mathrm{~T}=170^{\circ} \mathrm{C} \\ & \mathrm{U}=>170^{\circ} \mathrm{C} \end{aligned}$	Two digit number code listed in spec. representing each application or category of transformers and inductors $03=$ Power Transformer $04=$ Power Inductor $20=$ Audio Inductor $21=$ Audio Transformer $36=$ Pulse Transformer $37=$ Charging Inductor $40=$ Saturable Transformer $41=$ Saturable Inductor	Two letter code listed in spec. e.g., $F A=2.313 \times 2.625 \times$ $3.125^{\prime \prime}$. Stud threads, heights and tolerances must conform to spec. YY = non-std. metal case. ZZ $=$ encapsulated or molded.

MIL-F-18327-Military Specification for Filters
(High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning)

$\frac{\text { YY }}{\text { | }}$
CASE OR ENVELOPE
Two letter code listed in space e.g.,
$F A=2.313 \times 2.625 \times$ $3.125^{\prime \prime}$.Stud threads, heights and tolerances must conform to spec.
$\mathrm{YY}=$ non-std. metal case.
$\mathrm{ZZ}=$ encapsulated or molded.

Refers to application e.g.,
11 = Low Pass
$22=$ Band Pass
$33=$ High Pass

MIL-T-21038-Military Specification for Pulse Transformers

Refers to case material and environmental capability e.g.,
Grades 4 and $6=$ Metal cased. Max. reliability. Resistant to shock, vibration and thermal shock. For use at high altitudes if required.
Grades 5 and $7=$ Same as Grade 6 except encapsulated or molded.

ENVELOPE
$\frac{\text { One letter code }}{\text { DIMENSIONS }}$ representing fixed case styles in spec e.g.,
$A=$ radial leads.
C = terminations at one end.

One or two letter code representing fixed envelope dimensions.
$Z=$ other sizes.
AA $=$ Style J
PC type
Four digit code indicating the number of wdgs. and their ratios e.g.,

Quality and Reliability at UTC

UTC with over 50 years

of pioneering in the areas of research, design and engineering, assures you quality and reliability unexcelled in the industry. UTC has in continuous production the most complete line of standard items ready for immediate delivery from the factory or an authorized industrial distributor. This, coupled with broad capabilities in special (custom-built) items, covers virtually every transformer and filter requirement for both military and industrial use.

ENGINEERING

The knowledge and experience of the nation's top engineering talent create UTC products. All designs are fully laboratory proved before being released for production.

MATERIALS and LIFE TESTING

The material and process laboratories analyze and evaluate the materials employed in all products. Special processes are introduced as required by material characteristics. Finished units, as well as insulation systems, are constantly undergoing life tests to provide reliability guides for present and future designs and manufacturing processes. The purpose of these tests is to extend the life of each design to the absolute maximum-usually far beyond customer requirements.

QUALITY CONTROL

The quality control department coordinates all statistics relating to materials and processes. All incoming materials are subjected to exhaustive testing, with individual lots of materials separately isolated in order to afford tight material control throughout production. Continuous surveillance is conducted to assure conformance of products to all requirements. If discrepancies are found or anticipated, corrective action is immediately instituted. Parts made in house, such as drawn cans, stamped laminations, etc., are inspected and tested as though they were provided by an outside vendor. The QC/QA system meets MIL-I-45208 \& MIL-Q-9858. The calibration control system meets MIL-C-45662. We are fully certified to perform high reliability soldering to DOD 2000, WS 6536 and MIL-S-45743.

PRODUCT TESTING

Each individual transformer or filter is tested for its performance at least three times during successive stages of manufacture. In addition to this, a substantial sampling of production is put through extensive humidity, vibration, thermal shock, and overload testing to assure exact performance and reliability. Environmental tests are in conformance with MIL-STD-202.

MILITARY COMPONENTS

The UTC laboratories include complete "in house" DESC-approved facilities for testing to MIL-T-27, MIL-F-

18327, and MIL-T-21038. These facilities are employed for quality control of production as well as for proving new items. Virtually all hermetic items in this catalog have been proved to meet one or more of the MIL Specs, or are currently being tested.

A tremendous advantage exists in using the standardized UTC MIL components for military equipment. These units can be used in prototypes or full production without special tests, costs, or delays. Minor deviations from standard units do not affect the original test validity.

UTC hermetic components are of rugged design with high safety factors in all characteristics. They are either metal encased or molded and exceed MIL Specs in many respects, taking into consideration the most severe conditions which may be encountered in service. They are ideally suited for airborne, ground communications, marine, and missile service.

An increasing number of industrial equipment manufacturers, becoming concerned with the reliability of components in their equipment, are turning to hermetically sealed components. The necessity for reliability in industrial service is clear when the cost of an hour's shutdown of a broadcast schedule or industrial control system is visualized. To meet this need UTC can provide both UL-CSA approved products. For an explanation of our capability in this area, see page 62.

COMMERCIAL and INDUSTRIAL COMPONENTS

 UTC non-hermetic components are designed for a wide range of applications, and have found acceptance in all types of commercial and industrial equipment. They are conservatively designed to assure highest reliability. Breakdown test voltages are used far in excess of maximum working voltages. Potted units are sealed with special insulating compounds for maximum environmental protection. Our quality control on these components is as stringent as on our military lines, requiring 100% testing on prime parameters.
SPECIAL DESIGNS

In addition to the needs met by the standard components in this catalog, there are many unique applications which require special units. Special-design facilities are available for production of samples as well as large quantities. The close coordination between our design groups, sample shop, and factory assures production quality equal to sample quality.
THE END RESULT
UTC level of quality and reliability is unmatched in the industry.

For every phase of the art of iron core inductive devices, UTC is the first source for the highest reliability, the most varied types and the most sophisticated and advanced designs in the industry.

Opt
INDUSTRIES, INC. OPT Industries, Inc. 300 Red School Lane Phillipsburg, NJ 08865 (201) 454-2600 • TWX: 5102352920 FAX: (201) 454-3172

In Europe:
OPT Hellas, Ltd.
P.O. Box 44, Agia Paraskevi

Athens, Greece
Phone (01) 661-0700
TWX: 221288 OPTGR

[^0]: For Power DO-T Transformers (DO-T400 Series) See page 42.

[^1]: For 5% maximum distortion @ $1 \mathrm{KHz} \pm$ ma DC shown is for single ended usage. For push-pull, ma DC can be any balanced value taken by .5 W transistors
 -DO-T . 562 DI-T . 360 Where windings are listed as split, $1 / 4$ of the listed impedance is available by paralleling the winding.

[^2]: TOP-2000SH Drawn Hipermalloy Shield-. 53 O.D. x. 55 H

[^3]: - Return loss figures are lowest readings over the frequency range as measured per MIL-STD-188. For industrial use, return loss is greater than 22 dB . $\ddagger \ln$ 2-wire port.

[^4]: \dagger At $200 \mathrm{~Hz}, 1 / 4$ watt at 100 Hz .

[^5]: \dagger Pin numbers not shown in schematic will be missing.

[^6]: 0.3 to 3 Watt Isolation Converters Polarity Reversing and Voltage

[^7]: ${ }^{*}$ Nom. $A C$ and $D C$ volts are at 115 volt input . . . primary taps can modify $-6 \%,+6 \%$, and $+12 \%$.

[^8]: Operating temperature $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C} \quad$ To Order: Specify the part number followed by the case code Example: MF9003-11

[^9]: Operating temperature $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C} \quad$ To Order: Specify the part number followed by the case code Example: MF9103-11

[^10]: The higher VA ratings for 400 Hz are based on use of .004 in. Silectron.

