

TECHNICAL LETTER NO. 212A
USEFUL EQUATIONS FOR THE SOUND CONTRACTOR
By

## Don Davis and John Eargle

The advent of very small, very powerful calculators, such as the H.P. 35, have made it convenient for sound contractors to directly use the original equation rather than a nomongraph developed from such equations. Greater accuracy to several more places is one reward of this approach. More importantly perhaps, is the familiarity with the equations themselves as many new and more usable combinations of them tend to suggest themselves.

Note: In this technical letter, $\ln \equiv \log _{e}$.

## Basic Sound System Equations

The most used equations are those of ohms law:

1. $E=\sqrt{W R}, E=\frac{W}{1}, E=I R$
2. $W=\frac{E^{2}}{R}, W=I^{2} R, W=E I$
3. $\quad I=\frac{E}{R}, \quad I=\frac{W}{E}, \quad I=\sqrt{\frac{W}{R}}$
4. $R=\frac{E}{I}, \quad R=\frac{E^{2}}{W}, \quad R=\frac{W}{l^{2}}$
5. $R_{T}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}$
6. $R_{2}=\frac{R_{1} \cdot R_{T}}{R_{1}-R_{T}}$

7. $R_{S}=R_{1}+R_{2}+R_{3} \ldots+R_{n}$
8. $\quad R_{P}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \ldots+\frac{1}{R_{n}}}$

> 9. $C_{S}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \ldots+\frac{1}{C_{n}}}$
> 10. $C_{P}=C_{1}+C_{2}+C_{3} \ldots+C_{n}$
> 11. $L_{S}=L_{1}+L_{2}+L_{3} \ldots+L_{n}$
> 12. $L_{P}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}} \ldots+\frac{1}{L_{n}}}$

## Decibel Equations

Wherever a power ratio is expressed, it can be written as:

1. $10 \log _{10}\left(\frac{P_{1}}{P_{2}}\right)$

Wherever voltage, SPL etc., are expressed, they can be written as:
2. $20 \log _{10}\left(\frac{E_{1}}{E_{2}}\right) \ldots\left(\frac{S P L_{1}}{S P L_{2}}\right)$ etc. ,
3. Antilog ${ }_{10}\left(\frac{d B}{10}\right)=10^{\left(\frac{d B}{10}\right)}$
4. Antilog $10\left(\frac{d B}{20}\right)=10^{\left(\frac{d B}{20}\right)}=K$
5. Antilog ${ }_{10}\left(\frac{d B}{10}\right)=e^{\left[\ln 10\left(\frac{d B}{10}\right)\right]}$
6. Antilog $10\left(\frac{d B}{20}\right)=e^{\left[\ln 10\left(\frac{d B}{20}\right)\right]}$

## Time Delay Equations

With the introduction of digital time-delay devices and the likelihood of reducing costs in such devices, the following equations will be increasingly used.

To find time if distance is known:

$$
T=D\left(\frac{1}{1.13}\right)
$$

To find distance when time is known:

$$
D=1.13 \mathrm{~T}
$$

where $D$ is in feet and $T$ is in milliseconds.

## Equations Dependent Upon Room Parameters

The equations all require that the calculator has found at least three of the following parameters:

$$
\begin{aligned}
\mathrm{V}= & \text { internal volume of the space in } \mathrm{ft}^{3} \\
\mathrm{~S}= & \text { total boundary surface area in } \mathrm{ft}^{2} \\
\mathrm{RT}_{60}= & \begin{array}{l}
\text { the reverberation time for a delay of } 60 \mathrm{~dB} \text { from a steady-state } \\
\text { signal that is interrupted }
\end{array} \\
\overline{\mathrm{a}}= & \text { average absorption coefficient } \\
& \overline{\mathrm{a}}=\frac{{ }^{s}{ }_{1} a_{1}+\mathrm{s}_{2} a_{2}+\mathrm{s}_{3} a_{3} \ldots+\mathrm{s}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}}{\mathrm{~S}} \\
& \text { where: } \mathrm{s}=\text { individual surface area in } \mathrm{ft}^{2}
\end{aligned} \quad \mathrm{a}=\begin{aligned}
& \text { absorption coefficient of individual } \\
& \text { surface per square foot }
\end{aligned}
$$

Knowledge of any three of these allows the rapid calculation of the missing parameter as the following four equations illustrate:

$$
\begin{aligned}
& \text { 1. } V=\frac{-S \ln (1-\bar{a}) R T_{60}}{0.049} \\
& \text { 2. } \quad S=\frac{0.049}{-R T_{60} \ln (1-\bar{a})}=\frac{R}{\bar{a}}-R \\
& \text { 3. } \overline{\mathrm{a}} \\
& \text { 4. } \quad \mathrm{RT}_{60}=\frac{1-e^{-\left(\frac{0.049 V}{S \cdot R T_{60}}\right)}=\frac{R}{R+S}}{-S \ln (1-\bar{a})}
\end{aligned}
$$

Directivity Factor and Directivity Index
When the Directivity Factor (Q) and Directivity Index (DI) are introduced to the equations, room-loudspeaker interaction can be predicted by using the following equations:

1. For angles from $180^{\circ}$ to $1^{\circ} \quad Q=\frac{180}{\arcsin \left(\sin \frac{\theta}{2}\right)\left(\sin \frac{\phi}{2}\right)}$
2. $\mathrm{DI}=10 \log _{10} \mathrm{Q}$
3. $\mathrm{Q}=\operatorname{antilog}_{10}\left(\frac{\mathrm{DI}}{\mathrm{TO}}\right)$
4. DI $=S P L_{\theta}-\mathrm{SPL}_{s}$
where: $\quad S L_{\theta}=\left[10 \log _{10}\left(\frac{W Q 10^{13}}{4 \pi r^{2}}\right)\right]+0.5$

$$
S_{s}=\left[10 \log _{10}\left(\frac{W 10^{13}}{4 \pi r^{2}}\right)\right]+0.5
$$

5. $Q=\frac{180}{\arcsin \left(\frac{\sin ^{2} \alpha}{2}\right)}$
6. $\alpha=2 \arcsin \sqrt{\sin \frac{180}{Q}}$
7. $\phi=2 \arcsin \left(\frac{\frac{\sin ^{2} \alpha}{2}}{\sin \frac{\theta}{2}}\right)$
8. $\theta=2 \arcsin \left(\frac{\frac{\sin ^{2} \alpha}{2}}{\sin \frac{\phi}{2}}\right)$


## Critical Distance Equations

One of the most useful room-sound system parameters is critical distance ( $D_{c}$ ). This is the distance at which the direct sound source is equal to the reverberant sound generated by the enclosed space.

$$
\begin{aligned}
& \text { 1. } D_{c}=0.141 \sqrt{Q R} \\
& \text { 2. } 4 D_{c}=M A X D_{2} \\
& \text { 3. } \frac{\mathrm{dB}_{\mathrm{d}}}{\mathrm{~dB} \mathrm{r}_{\mathrm{r}}}=10 \log _{10}\left[\left(\frac{\mathrm{Q}}{16 \pi \mathrm{r}^{2}}\right)(\mathrm{R})\right] \\
& \text { 4. } R=\frac{s \bar{a}}{1-\bar{a}}=\frac{\left(D_{c}\right)^{2}}{0.019881 Q} \\
& \text { 5. } s \bar{a}=R(1-\bar{a}) \\
& \text { 6. } \Delta D_{x}=10 \log _{10}\left[\left(\frac{Q}{4 \pi r^{2}}\right)+\left(\frac{4}{R}\right)\right]
\end{aligned}
$$

7. $r$

$$
=\sqrt{\left[\frac{Q}{\left.\frac{\operatorname{antilog}_{10}\left(\frac{\Delta D_{x}}{10}\right)-\left(\frac{4}{R}\right)}{4 \pi}\right]}\right.}
$$

where: $d B=r$ desired
EXAMPLE: $[P A G-N A G] \pm{ }^{\Delta D} x=d B$
8. given: $D_{2}=4 D_{c}$

$$
M I N Q=\frac{(0.25 \mathrm{D} 2)^{2}}{0.019881 \mathrm{R}}
$$

$$
M I N R=\frac{\left(0.25 D_{2}\right)^{2}}{0.019881 Q}
$$

TO FIND MAX RT 60 :
(A) FIND MIN R
(B) FIND MIN $\bar{a},\left(\operatorname{MIN~} \bar{a}=\frac{M I N R}{M I N R+S}\right)$
(C) CALCULATE MAX RT 60
9. $N A G=\Delta D_{0}-\Delta E A D+10 \log _{10} N O M+6$
10. PAG $=\Delta D_{0}+\Delta D_{1}-\Delta D_{s}-\Delta D_{2}$
11. New $D_{s}$ in $d B=\Delta D_{s}+(P A G-N A G)$
12. New $D_{2}$ indB $=\Delta D_{2}+(P A G-N A G)$
13. New $D_{1}$ in $d B=\Delta D_{1}-(P A G-N A G)$
14. New $E A D$ in $d B=\triangle E A D-(P A G-N A G)$

Finding the Efficiency of a Loudspeaker
The $Q$ of an unknown loudspeaker can be found by measuring its $D_{C}$ in a reverberant space. Once its $Q$ is known, its sensitivity can be measured out of doors at 4' and then its efficiency can be calculated.

$$
\% \text { Effic. }=\text { antilog }_{10}\left[\frac{(L) \text { Effic. }-\left(10 \log _{10} Q+107.47\right)}{10}\right] \times 100
$$

where: (L) Effic. = 4', 1 watt sensitivity

## Summing Noise Levels

The Walsh-Healy Act has brought increased attention to the measurement of ambient noise levels. They are often measured by plotting $1 / 3$-octave bands on a chart. When a summed reading was not taken on the $C$ scale or linear scale of an SLM, the overall wideband SPL can be calculated with the following equations:

$$
C N L=10 \log _{10}\left[\left(a^{\left.\left(a n t i \log _{10} \frac{d B}{10}\right)_{1}+\left(\operatorname{antilog}_{10} \frac{d B}{10}\right)_{2} \ldots+\left(\operatorname{anti\operatorname {log}_{10}} \frac{d B}{10}\right)_{n}\right]}\right.\right.
$$

where: $\mathrm{CNL}=$ combined bands noise level

## Calculating THD

When a wave analyzer has been used to obtain the number of $d B$ below the fundamental of each harmonic, THD can be calculated with the following equation:

$$
T H D=\sqrt{\left(\frac{10,000}{a n t i \log _{10} \frac{d B}{10}}\right)_{1}+\left(\frac{10,000}{a_{n+i \log _{10} \frac{d B}{10}}^{10}}\right)_{2} \ldots+\left(\frac{10,000}{\operatorname{antilog}_{10} \frac{d B}{10}}\right)_{n}}
$$

## Vector Calculation

The larger programmable calculators offer rectangular-to-polar and polar-to-rectangular conversion. H.P. 35 does not offer this conversion, but such calculations are relatively simple:

Rectangular-to-Polar Conversion

1. Vector length $=\sqrt{x^{2}+y^{2}}$
2. Angle $=\arctan \frac{y}{x}$

$$
=\arctan \frac{-y}{x}
$$

$$
=\arctan \frac{y}{-x}+180^{\circ}
$$

$$
=\arctan \frac{-y}{-x}-180^{\circ}
$$

Polar-to-Rectangular Conversion

1. Sin angle times vector $=y$

Angle $0^{\circ}$ to $+180^{\circ}=+y$
Angle $0^{\circ}$ to $-180^{\circ}=-y$
2. Cos angle times vector $=x$

Angle $0^{\circ}$ to $+90^{\circ}=+x$
Angle $0^{\circ}$ to $-90^{\circ}=+x$
Angle $+90^{\circ}$ to $+180^{\circ}=-x$
Angle $-90^{\circ}$ to $-180^{\circ}=-x$

## Calculating Hyperbolic Functions

While hyperbolic functions are not used frequently in sound contracting work, they are valuable tools for loudspeaker designers, communication-system engineers, etc. The H.P. 35 can be used to quickly find any hyperbolic function by using the following equations:

$$
\begin{aligned}
& \text { 1. } \sinh x=\frac{e^{x}-e^{-x}}{2} \\
& \text { 2. } \operatorname{arcsinh} x=\ln \left[x+\left(x^{2}+1\right)^{1 / 2}\right] \\
& \text { 3. } \cosh x \\
& \text { 4. } \operatorname{arc} \cosh x=\frac{e^{x}+e^{-x}}{2} \\
& \text { 5. } \operatorname{Tanh} x \\
& \text { 6. } \ln \left[x+\left(x^{2}-1\right)^{1 / 2}\right] \\
& \text { 6. } \operatorname{arc} \tanh x=e^{x}-e^{-x} \\
& \frac{1}{2}\left[\ln \left(\frac{1+x}{1-x}\right)\right]
\end{aligned}
$$

## Equations for Articulation Losses

1. Maximum $D_{2}$ for $A L_{\text {zons }}$ of $15 \%=\sqrt{\frac{15 V Q}{641.81\left(\mathrm{RT}_{60}\right)^{2}}}$
2. Maximum $R T_{60}$ for $A L_{\text {cons }}$ of $15 \%=\sqrt{\frac{15 \mathrm{VQ}}{641.81\left(\mathrm{D}_{2}\right)^{2}}}$
3. Maximum $V$ for $A L_{\text {cons }}$ of $15 \%=\frac{641.81\left(D_{2}\right)^{2}\left(R T_{60}\right)^{2}}{15 Q}$
4. Minimum $Q$ for $A L_{\text {cons }}$ of $15 \%=\frac{641.81\left(\mathrm{D}_{2}\right)^{2}\left(\mathrm{RT}_{60}\right)^{2}}{15 \mathrm{~V}}$
5. $\mathrm{AL}_{\text {cons }}$ in percentage $=\frac{641.81\left(\mathrm{D}_{2}\right)^{2}\left(\mathrm{RT}_{60}\right)^{2}}{\mathrm{VQ}}$

These useful equations constitute a minimum beginning for workers in the sound contracting business. It is hoped to expand this collection year by year into catalogues that will serve as a ready and useful compilation of equations for the busy sound system engineer. Suggestions for additions in both catalogues and equations are solicited and welcome here in Anaheim.

MATHEMATICAL SYMBOLS
X or • Multiplied by
$\div$ or : Divided by

+ Positive. Plus. Add
- Negative. Minus. Subtract
$\pm$ Positive or negative. Plus or minus
$\mp$ Negative or positive. Minus or plus
= or :: Equals
三 Identity
$\cong$ Is approximately equal to
$\neq$ Does not equal
$>$ Is greater than
$\gg$ Is much greater than
$<$ ls less than
$\ll$ Is much less than
$\geqq$ Greater than or equal to
$\leqq$ Less than or equal to
$\therefore$ Therefore
$\angle$ Angle
$\Delta$ Increment or decrement
$\perp$ Perpendicular to
|| Parallel to
$|n|$ Absolute value of

MATHEMATICAL CONSTANTS

| $\pi$ | $=$ | 3.1415962654 | $\sqrt{\pi}=$ | 1.7722453851 |
| :---: | :---: | :---: | :---: | :---: |
| $2 \pi$ | $=$ | 6.283185307 | $\sqrt{2}=$ | 1.414213562 |
| $(2 \pi)^{2}$ | $=$ | 39.47841760 | $\sqrt{3}=$ | 1.732050808 |
|  | = | 12.56637061 | $\frac{1}{\sqrt{2}}=$ | 0.707106781 |
| $\pi^{2}$ | $=$ | 9.869604401 | $\sqrt{\sqrt{2}}$ | 0.707106781 |
| $\frac{\pi}{2}$ | $=$ | 1.570796327 | $\frac{1}{\sqrt{3}}=$ | 0.577350269 |
| $\frac{1}{\pi}$ | = | 0.318309886 | $\log \pi=$ | 0.497149873 |
| $\frac{1}{2 \pi}$ | = | 0.159154943 | $\log \frac{\pi}{2}=$ | 0.196119877 |
| $\frac{1}{\pi}$ | $=$ | 0.101321184 | $\log \pi^{2}=$ | 0.994299745 |
| $\pi$ |  |  | $\log \sqrt{\pi}=$ | 0.248574936 |
| $\frac{1}{\sqrt{\pi}}$ | $=$ | 0.564189584 |  | 2.718281828 |

ALGEBRA

## Exponents and Radicals

| $a^{x} \times a^{y}=a^{(x+y)}$ | $\frac{a^{x}}{a^{y}}=a^{(x-y)}$ |
| :---: | :---: |
| $(a b)^{x}=a^{x} b^{x}$ | $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ |
| $\sqrt[x]{\frac{a}{b}}=\frac{\sqrt[x]{a}}{\sqrt[x]{b}}$ | $a^{-x}=\frac{1}{a^{x}}$ |
| $\left(a^{x}\right)^{y}=a^{x y}$ | $\sqrt[x]{\sqrt[x]{a}}=\sqrt[x y]{a}$ |
| $\sqrt[x]{a b}=\sqrt[x]{a} \sqrt[x]{b}$ | $a^{\frac{x}{y}}=\sqrt[y]{a^{x}}$ |
| $a^{\bar{x}}=\sqrt[x]{a}$ | $a^{0}=1$ |

Solution of a Quadratic
Quadratic equations in the form

$$
a x^{2}+b x+c=0
$$

may be solved by the following:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Transposition of Terms

$$
\begin{aligned}
& \text { If } A=\frac{B}{C} \text {, then } B=A C, C=\frac{B}{A} \\
& \text { If } \frac{A}{B}=\frac{C}{D}, \text { then } A=\frac{B C}{D}, B=\frac{A D}{C}, \\
& \qquad C=\frac{A D}{B}, D=\frac{B C}{A} \\
& \text { If } A=\frac{1}{D \sqrt{B C}}, \text { then } A^{2}=\frac{1}{D^{2} B C}, \\
& \text { If } A=\frac{1}{D^{2} A^{2} C}, C=\frac{1}{D^{2} A^{2} B}, D=\frac{1}{A \sqrt{B C}} \\
& B=\sqrt{A^{2}+C^{2}}, \text { then } A^{2}=B^{2}+C^{2}, \\
& B=\sqrt{A^{2}-B^{2}}
\end{aligned}
$$

