Altec Precision Attenuators and Networks

TABLE OF CONTENTS

Calibrated Grid Control Potentiometers:
RP8600-8606, RP8621-8627,
RP8640-8643 Series .. 6
Precision Decade Attenuators:
DA8735-8746 Series
Precision Variable Impedance Matching
Networks: PN8747-8754 SeriesPage
Rotary Differential Attenuators： RA8811 Series ．． 8
VU Meter Range Extenders：
VU8010－8011，VU8700－8712 Series ．．．．．．．．．．．．．．．． 9
Mixer Networks：MN8000 Series10
Fixed Loss Pads：LP8000 Series ．． 11
Bridging Pads：BP8000 Series ． 11
Minimum Loss Matching Pads：MP8000 Series．． 11

VU Meter corrections for impedances other than 600Ω ．A chart for rapid conversion

[^0]．． 2oral in
Ordering Information 3
Impedance Code ．． 3Straight Line Attenuators（PrimarilySM8324－8327 Series4
Rotary Attenuators（Primarily used inMixing Circuits）：RM8200－8223 andRM8225－8226 Series5
Calibrated Attenuators：RA8400－8418，

GENERAL:

The basic information on this page is intended as a guide to practices relative to passive resistive networks that have been accepted by a majority of engineers engaged in audio systems-design.

WHAT IS A MIXER? Specifically, a mixer is a passive, fixed network composed of non-inductive resistances (see Page 10). In normal practice, each input leg of these networks has a variable attenuator associated with it Such variable attenuators are called "Mixer Controls." Mixer Controls ar standard, variable attenuators that meet the following requirements:

1. No detents are used, and the dial markings have arbitrary scale markings.
2. Attenuation is linear down to about 45 dB , and then rapidly tapers off in increasingly larger steps to maximum cutoff.
3. Circuit configuration is compatible with low-noise requirements and impedance-match to the fixed-mixer network.
In control consoles used for mixing audio signals, two circuit configurations predominate for use in variable attenuators. These are the "ladder" and the "bridged-T." For the mixer control application, the ladder is and the "bridged-T. For the mixer control application, the ladder is compared to the " T ' s " - 90 to - 100 dB . Additionally, contact noise and signal level both decrease with increasing attenuation in the ladder, whereas contact noise remains at the same level as the signal is attenuated in the " T ". Another "built-in" advantage of the ladder circuit, when used as a mixer control, is the 6-dB insertion loss provided. This residual oss ensures impedance isolation between the mixer network and the output
of the preamplifier. Due to modern negative feedback design practices, the preamplifier often presents a very low output impedance to the mixer net work if no isolation is provided. The bridged-T makes an excellent board master - at this point in the console, signal levels are sufficiently high, and noise control is less of a problem.

CIRCUIT TYPES

Attenuators are available in both unbalanced and balanced circuit configurations. Professional audio consoles normally use unbalanced attenu ators, even though all input and output lines are balanced. This is due to:

1. An unbalanced circuit allows simplicity of design (one-half the components required for balanced configuration.)
2. Associated equipments, such as equalizers, are normally available only as unbalanced circuits.
3. Cost of a console more than doubles, if balanced circuitry is employed.
Balanced circuitry, however, is the rule for any line outside the physical confines of the console itself. Balanced attenuators are employed where they must be inserted in long audio lines or where an unbalance-to-ground would cause difficulty - as in measurement work.

Bridged-T and Balanced-H Circuits

Use of Gain Chart for Plotting Changes in Level

NOTE: Passive resistance networks should be properly terminated with their specified oper ating impedance. This means a physical ter mination must be established. An amplifier may have a nominal "600-ohm input impedance, and yet, physically, be many times hat. Make sure that the attenuator, loss pad fader, etc., sees a definite termination imis not done.

HOW TO ORDER AN ALTEC ATTENUATOR OR NETWORK FROM THIS CATALOG:

Consult current ALTEC price lists to determine which controls listed herein are regularly stocked by the factory. NON-STOCK ITEMS are considered 'special order" and, as such, are NOT RETURNABLE.

ALTEC Attenuators and Networks are coded to describe specific audio controls. Each code consists of:

1. A two-letter prefix in the first of the six boxes (see tables below) identifies the type of control.
2. The four-digit number (second box), obtained from the tables on specific catalog sheets, denotes the control's series-number.
3. The fourth box (following the dash) usually indicates the number of attenuators "ganged" together. In fixed mixer networks, this box is used to indicate the number of inputs (a single output is implied). In the case of fixed loss pads and VU meter extenders, the loss figure, in dB required, may be put in this box. If the loss-required figure contains a decimal, the 00 is left in the fourth box, and the loss-required figure appears at the end of the code, in parenthesis.
4. Box number five indicates input impedance.
5. Box six indicates output impedance. Since all fixed resistive networks (except "Ladder" and attenuators with a cue position) are reversible, either set of ports may be used as input or output.
6. Box seven allows notation for inclusion of detents or cue position. It is always helpful to include data on the service for which a conrol is intended, or other special information, such as flats", length of shaft, special detent angle, etc., that may be required.

NOTICE: ALTEC LANSING invites special orders for any network listed in this catalog.

The two digits following the dash may indicate any of several things, depending on the type of control being ordered. IN A MAJORITY OF CASES,
THESE TWO DIGITS WILL INDICATE THE NUMBER OF GANGS: i.e., "O1" THESE TWO DIGITS WILL INDICATE THE NUMBER OF GANGS: i.e., "OI" means a single-gang unit, "2 is a two-gang unit, etc. However, in the case of fixed networks where the number of gangs does not apply, these two figures are used to indicate other specifications. For example, in mixer networks they refer to the number of inputs: i.e., " $03^{\prime \prime}$ would mean three inputs, 11 would indicate eleven inputs, etc. (up to 20). In the part number of fixed loss pads and VU Meter extenders, these two digits refer to the amount of loss (in dB) or the dBm required. Where this value re
 For example, a network with a 9.5 dB loss should be ordered as "LPBO04 For example,
Check to ensure that coding is correct for:
(1) Basic Number Check against specifications in the appropriate table.
(2) Gangs
(3) Impedance
(4) Detents

Make certain the digits following the dash (-) indicate the correct number of gangs (or inputs or cate the correct number of gangs (or inputs or Check the suffix to be certain that the proper input Check the suffix to be certain that the proper input
and, where applicable, output impedance is correctly and, cod.
If the unit is a mixer* or stereo pan pot and detents are desired, add a "D" to the suffix. If detents are
not desired on a control that normally has them, not desired on a control that normally has them,
delete the " D " from the suffix of the model number. Specify by adding a " Q " to the suffix of the model number. (Cue positions are not available on controls having detents.)
ther information which may be included with the order is:
(1) Shaft Length Standard shaft length is 0.87 inch from the face plate (or the bushing, if the unit is designed for plate (or the bushing, if the unit is designed for
center-hole mounting). If other than standard length is required, indicate the desired lensth on the order.
(2) Flats on Shaft Mounting

Indicate position if flats are desi-ed. Specify center or plate mounting. (See mounting incormation, page 5.) It is advisable to double-check the model number by providing information, where applicable, as to:

> Circuit type

Loss in dB per step
Total dB loss or voltage ratio
Input and output impedances
Number of gangs
Number of steps
Detent angle
*Mixers with detents require a special dial for proper indexing.

STRAIGHT LINE ATTENUATORS (SM8272-8281 and SM8324-8327)

ALTEC Straight Line Attenuators, which are precision controls for signal blending, are designed for the most critical applications in musical scoring re-recording, radio and television usage, and high quality sound reinforcement systems. These mixers feature a nylon bearing on a longitudinallyhoned, chrome-plated shaft that provides almost friction-free operation. Less than 40 grams of pressure is required to alter a setting, and break away friction is not apparent. The resistance wire and the collector rail are made of the same material as the wire (nichrome) to prevent generation of thermal voltages. Brushes are gold tipped. A dirt trap over the resistance element catches airborne particles, which greatly decreases the need for periodic cleaning and maintenance. Connections are made by a plug to the connection cable socket or a plug-in adapter, permitting rapid disassembly
for inspection. An adjustable screw (located just ahead of the knob) may be tightened or loosened to alter the pressure required to move the control knob-a useful feature for installations where a sound engineer might prefer more than 40 grams pressure. For multi-channel applications, the
ALTEC Straight Line Mixer is available in 2, 3,4 , 5 , and 6 -gang assemblies, all operating with a single control knob.
Special frames for plug-in mounting and special escutcheons for these mixers are available as accessories and MUST BE ORDERED SEPARATELY. All straight line mixers are supplied with a knob; all ladders have $6-\mathrm{dB}$ insertion loss; and all units have a standard impedance of 600 ohms. Other impedances are available on special order.

TABLE III: Dimension and Weight Information

STRAIGHT LINE CONTROLS Straight Line Mixers, Stereo Pan Pots				ACCESSORIES Escutcheons Mounting Frames	
Gangs	D	Weight (oz.)	E	F	G
1	$11 / \mathbf{s}^{\prime \prime}$	20.3	$1.5^{\prime \prime}$ (or $1.25^{\prime \prime}$)	$1.25^{\prime \prime}$	$0.750^{\prime \prime}$ (or $0.625^{\prime \prime}$)
2	$11 / 8^{\prime \prime}$	22.5	$1.5^{\prime \prime}$ (or $1.25^{\prime \prime}$)	$1.25^{\prime \prime}$	$0.750^{\prime \prime}\left(\right.$ or $\left.0.625^{\prime \prime}\right)$
3	$112^{\prime \prime}$	28.5	$1.75^{\prime \prime}$	$1.625^{\prime \prime}$	$1.068^{\prime \prime}$
4	$23 / 4^{\prime \prime}$	36.8	$3^{\prime \prime}$	$2.875^{\prime \prime}$	$1.906^{\prime \prime}$
5	$23 / 4^{\prime \prime}$	38.9	$3^{\prime \prime}$	$2.875^{\prime \prime}$	$1.906^{\prime \prime}$
6	$23 / 4^{\prime \prime}$	41.0	$3^{\prime \prime}$	$2.875^{\prime \prime}$	$1.906^{\prime \prime}$

| TABLE IV: Siraight Line Mixers | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| UNBALANCED | | SPECIFICATIONS | BALANCED | | |
| Model
 Number | Circuit | No. of
 Steps | dB per
 Step | Model
 Number | Circuit |
| SM8272-01GG | Ladder | Slide Wire | - | SM8277-01GG* | Slide Wire |
| SM8273-01GG | Ladder** | 20 | 2 | SM8278-01GG | Balanced Ladder |
| SM8274-01GG | Ladder** | 30 | $11 / 2$ | SM8279-01GG | Balanced Ladder |
| SM8275-01GG | Bridged-T** | 20 | 2 | SM8280-01GG* | Balanced-H |
| SM8276-01GG | Bridged-T** | 30 | $11 / 2$ | SM8281-01GG* | Balanced-H |
| SM8326-01SN | Unbalanced Pot** | 20 | 2 | SM8324-01SN | Balanced Pot |
| SM8327-01SN | Unbalanced Pot** | 30 | $11 / 2$ | SM8325-01SN | Balanced Pot |

*Available in single, 2, or 3-gang models only (NOTE: for 2 or 3 -gang version, substitute " 02 " or " 03 "
for the " 01 " in the model number.)
**Step-Type. (Detents available on Special Order.)

STRAIGHT LINE CONTROLS

ACCESSORIES \& WIRING INFORMATION

Escutcheons and plug-in mounting frames are not supplied with straight line controls, and must be ordered separately. All straight line controls are supplied with a standard red knob. A variety of solid-color molded knobs are also available. They should be ordered by part number:

Red	$9622-2$	Grey	$9622-8$
Yellow	$9622-4$	White	$9622-9$
Green	$9622-5$	Black	$9622-10$
Blue	$9622-6$		

There are several sizes and types of escutcheon plates and mounting frames for straight line controls. These should be ordered by part number, as follows:

STRAIGHT LINE ESCUTCHEONS

For 1-and 2-gang units, black, engraved, $11 / 2$ inch wide $\ldots \ldots ~$ 611
order part number 50996
On the bottom of each Altec Straight Line Attenuator is a connector-cable socket or a plug-in adapter with six pins. The pins are identified as A, B, C, D, E, and F, or $1,2,3,4,5$, and 6 . Input and output connections should be made as follows: Pin 1-A $=1 \mathrm{~N} ; 2-\mathrm{B}=\mathrm{IN}(\mathrm{C}) ; 3-\mathrm{C}=$ OUT 4-D $=$ OUT (C); 5-E $=$ GND (chassis ground); and 6-F $=$ Cue (when used).

Mounting brackets are supplied on all straight line attenuators (mounting holes: $5 / 32^{\prime \prime}$ in diameter). If mounting frames are used, the mounting brackets should be removed from the control and installed on the mounting frame.

ALTEC Rotary Attenuators, accurate controls for the blending of signals in all audio applications, have a life expectancy in excess of a million turns. dirt, corrosion, and moisture. Only fine silver is used in the contacts and brushes. Light, but uniform, operating pressure decreases wear. Low friction bearing ensure precise contact positioning, minimum drag, and smooth, accurate control. Only 2 inch-ounces of torque are required to alter settings for ladder circuit mixers; however, 4 inch-ounces are needed for the bridged-T types.
All connections are made to solder-terminals at the rear of the unit. Maximum cutoff and elimination of crosstalk is provided with the use of an extra " C " (common) terminal, which eliminates the usual 2 -wire common, thus simplifying testing and wire changing. Case ground on all controls appears at a terminal that is completely removed from the signal ground (common).
ALTEC Rotary Attenuators are available in two frame sizes, as well as in
single, double, and triple "gang". units for multi-channel applications. They have standard input and output impedances of 600 ohms (other impedances available on special order) and are supplied with knob and dial.
Attenuators used as mixing controls do not have detents or cue positions, however either are available on special order. Attenuators with detents require a special dial for proper indexing, which should be ordered separately. A cue position requires an extra step (except on those models with 45 steps) where the cue position replaces the last step and the next-to-last step is infinity.
Only single-gang models are listed in the table. Available (except as noted) are 2-, 3 -, \& 4 -gang models, which may be ordered by inserting the desired number of gangs in the model number. The "01" portion of the model number indicates one (or single) gang units. Substitute "02" order a 2 -gang unit, or " 03 for the 3 -gang unit of the model desired. or example, RM8200-01GG is the single-gang version; RM8200-02GG is the 2 -gang version; etc.

3-GANG

2-GANG

DETENTS

NOT NORMALLY SUPPLIED
SINGLE
(shown)

UNBALANCED			SPECIFICATIONS			BALANCED		
Model Number	Circuit	Size	No. of Steps	DB per Step	Total Degrees of Rotation	Model Number	Circuit	Size
RM8200-01GG	Ladder	$11 / 2$	20	21/4	300	RM8204-01GG	Balanced Ladder	21/4
RM8201-01GG	Ladder	$11 / 2$	20	2	300	RM8205-01GG	Balanced Ladder	21/4
RM8202-01GG	Ladder	11/2	30	$11 / 2$	300	RM8206-01GG	Balanced Ladder	21/4
RM8203-01GG	Ladder	21/4	45	1	$3371 / 2$	RM8207-01GG*1	Balanced Ladder	21/4
RM8208-01GG	Bridged-T	21/4	20	21/4	300	RM8212-01GG*1	Balanced-H	21/4
RM8209-01GG	Bridged-T	21/4	20	2	300	RM8213-01GG*1	Balanced-H	21/4
RM8210-01GG	Bridged-T	21/4	30	$11 / 2$	300	RM8214-01GG*1	Balanced-H	21/4
RM8211-01GG*1	Bridged-T	21/4	45	1	3371/2	RM8215-01GG*2	Balanced-H	21/4
RM8216-01SN	Unbalanced-Pot	$11 / 2$	20	21/4	300	RM8220-01SN	Balanced-Pot	21/4
RM8217-01SN	Unbalanced-Pot	$11 / 2$	20	2	300	RM8221-01SN	Balanced-Pot	21/4
RM8218-01SN	Unbalanced-Pot	$11 / 2$	30	11/2	300	RM8222-01SN	Balanced-Pot	21/4
RM8219-01SN	Unbalanced-Pot	21/4	45	1	3371/2	RM8223-01SN*1	Balanced-Pot	21/4
RM8225-01GG	Ladder	$11 / 2$	30	$11 / 2$	3371/2			
RM8226-01GG	Bridged-T	21/4	30	$11 / 2$	3371/2			

*Single unit in 2 -gang frame and 2 -gang unit in 4 -gang frame.
${ }^{1}$ Made in single and 2 -gang models only.
${ }^{2}$ Made in single-gang model only.

ACCESSORIES

All rotary controls are supplied with knob and dial, but they may be ordered without knob and/or dial if preferred.

TABLE VI: Rotary Controls				
Rotary Mixers, Calibrated Attenuators, Calibrated Grid Control Potentiometers, VU Range Extenders, Precision Measuring Equipment, Motion Picture Faders, Rotary Differential Attenuator				
Frame Size	$A \& B$	C	W $11 / 2$	$2^{1 / 4^{\prime \prime}}$
Single	$11 / 2^{\prime \prime}$ or $21 / 4^{\prime \prime}$	$2.30^{\prime \prime}$	7	11
2-Gang	$11 / 2^{\prime \prime}$ or $21 / 4^{\prime \prime}$	$3.47{ }^{\prime \prime}$	10	14
3-Gang	$11 / 2^{\prime \prime}$ or $21 / 4^{\prime \prime}$	4.59'1	13	17
4-Gang	$11 / 2^{\prime \prime}$ or $2^{1 / 4^{\prime \prime}}$	5.78 ${ }^{\prime \prime}$	16	20
5-Gang	$11 / 2^{\prime \prime}$ or $21 / 4^{\prime \prime}$	$6.87{ }^{\prime \prime}$	19	23
6-Gang	$11 / 2^{\prime \prime}$ or $21 / 4^{\prime \prime}$	8.02' ${ }^{\prime \prime}$	22	26

NOTE: Additional gangs are available, by special order, on some combinations. Request special quote

NOTE: Mixers with potentiometer circuitry require input impedance code only. Output impedance should be N (Not Applicable) as indicated in the Table.

KNOBS

The 9607 Knob, $2^{\prime \prime}$ in diameter, is furnished with all equipment with the exception of the 9200 A Console.
The 9608 Knob, $11 / 4^{\prime \prime}$ in diameter, is furnished with the 9200A Console.

ROTARY ATTENUATORS

Small size ($11 / 2^{\prime \prime}$ square) Rotary Attenuators may be either center-hole or plate mounted. Plate mounting holes are $11 / 4^{\prime \prime}$ apart.

The larger size Rotary Attenuators ($21 / 4^{\prime \prime}$ square) should be plate mounted. Mounting holes are $11 / 4^{\prime \prime}$ and $11 / 2^{\prime \prime}$ apart.

The control shafts are $1 / 4^{\prime \prime}$ in diameter, but the mounting hole is drilled $3 / 8^{\prime \prime}$ in diameter to accommodate the threaded bushing. Shaft length is $7 / 8^{\prime \prime}$.

All rotary units may be opened by removing the mounting plate at the knob end of the control, then sliding the case off the unit.

ALTEC Calibrated Attenuators are equipped with a calibrated dial and nlike mixers, are made with detents to facilitate return to exact contro settings. These attenuators are available in both unbalanced and balanced circuitry, while the balanced attenuators utilize the "balanced ladder" or "balanced- $\mathrm{H}^{\prime \prime}$ type of circuit, as illustrated to the right.
The insertion loss of the " T " and " H " circuit attenuators is zero. For the ladder circuit attenuators, the insertion loss is 6 dB . All models have standard input and output impedances of 600 Ohms (other desired impedances are available by special order) and are made in single, double, and triple gang types (except as noted in Table VII). Specifications for these attenuators will be found in Table VII with unbalanced models listed on the left and their balanced equivalents on the right.

SUPPLIED
WITH DETENTS

Balanced-H

TABLE VII: Calibrated Attenuators										
UNBALANCED			SPECIFICATIONS					BALANCED		
Model Number	Circuit	Size	No. of Steps	DB per	Total DB Loss	Detent Angle	Total Degrees of Rotation	Model Number	Circuit	Size
RA8400-01GGD	Ladder	$11 / 2$	10	1	10	15°	150°	RA8457-01GGD	Balanced Ladder	$11 / 2$
RA8401-01GGD	Ladder	$11 / 2$	20	1	20	15°	$300{ }^{\circ}$	RA8458-01GGD	Balanced Ladder	21/4
RA8402-01GGD	Ladder	$11 / 2$	30	1	30	$111 / 4^{\circ}$	$3371 / 2^{\circ}$	RA8459-01GGD	Balanced Ladder	21/4
RA8403-01GGD	Ladder	$11 / 2$	10	2	20	15°	150°	RA8460-01GGD	Balanced Ladder	$11 / 2$
RA8404-01GGD	Ladder	$11 / 2$	20	2	40	15°	300°	RA8461-01GGD	Balanced Ladder	21/4
RA8405-01GGD	Ladder	$11 / 2$	10	5	50	15°	150°			
RA8406-01GGD	Bridged-T	$11 / 2$	10	1/10	1	15°	150°	RA8462-01GGD	Balanced-H	21/4
RA8407-01GGD	Bridged-T	21/4	20	1/10	2	15°	$300{ }^{\circ}$	RA8463-01GGD*	Balanced-H	21/4
RA8408-01GGD	Bridged-T	$11 / 2$	10	$1 / 2$	5	15°	150°	RA8464-01GGD	Balanced-H	21/4
RA8409-01GGD	Bridged-T	21/4	20	$1 / 2$	10	15°	300°	RA8465-01GGD*	Balanced-H	$21 / 4$
RA8410-01GGD	Bridged-T	$11 / 2$	10	1	10	15°	150°	RA8466-01GGD	Balanced-H	21/4
RA8411-01GGD	Bridged-T	$11 / 2$	15	1	15	10°	150°	RA8467-01GGD	Balanced-H	21/4
RA8412-01GGD	Bridged-T	21/4	20	1	20	15°	300°	RA8468-01GGD*	Balanced-H	21/4
RA8413-01GGD	Bridged-T	21/4	30	1	30	$111 / 4^{\circ}$	$3371 / 2^{\circ}$	RA8469-01GGD*	Balanced-H	21/4
RA8414-01GGD	Bridged-T	$11 / 2$	10	2	20	15°	150°	RA8470-01GGD	Balanced-H	21/4
RA8415-01GGD	Bridged-T	$11 / 2$	15	2	30	10°	150°	RA8471-01GGD	Balanced-H	21/4
RA8416-01GGD	Bridged-T	21/4	20	2	40	15°	300°	RA8472-01GGD*	Balanced-H	21/4
RA8417-01GGD	Bridged-T	21/4	30	2	60	$111 / 4^{\circ}$	$3371 / 2^{\circ}$	RA8473-01GGD*	Balanced-H	21/4
RA8418-01GGD	Bridged-T	$11 / 2$	10	5	50	15°	150°	RA8474-01GGD	Balanced-H	21/4
			20	1/10	2	15°	300°	RA8506-01GGD*	Balanced-H	$11 / 2$
RA8508-01GGD	Bridged-T	21/4	45	1	45	$71 / 2^{\circ}$	$3371 / 2^{\circ}$			
${ }^{*}$ Single gang unit in 2-gang frame and 2 -gang unit in 4 -gang frame. No 3 -gang unit available.						NOTE: Last step can be used for "Infinity" or "Off", but 1 step of calibrated attenuation will be lost.				

CALIBRATED GRID CONTROL POTENTIOMETERS (RP8600-8606, RP8621-8627, RP8640-8643)

ALTEC Calibrated Grid Contral Potentiometers are designed to ensure calibration into an open circuit, such as the grid of a Class " A " amplifier tube. ALTEC Grid Control Potentiometers are available with an unbalanced
configuration for single grids, and with a balanced configuration for pushpull grid circuitry. All units are equipped with detents, and all are sup-

UNBALANCED		SPECIFICATIONS					BALANCED	
Model Number	Size	No. of Steps	DB per Step	Total DB Loss	Detent Angle	Total Degrees of Rotation	Model Number	Size
RP8600-01SND	$11 / 2$	10	5	50	15°	150°	RP8621-01SND	$11 / 2$
RP8601-01SND	$11 / 2$	15	5	75	15°	$225{ }^{\circ}$	RP8622-01SND**	$11 / 2$
RP8602-01SND	$11 / 2$	20	3	60	15°	$300{ }^{\circ}$	RP8623-01SND	21/4
RP8603-01SND	$11 / 2$	30	1	30	$111 / 4^{\circ}$	$3371 / 2^{\circ}$	RP8624-01SND	21/4
RP8604-01SND	11/2	30	2	60	$111 / 4^{\circ}$	$3371 / 2^{\circ}$	RP8625-01SND	21/4
RP8605-01SND	21/4	40	1	40	$71 / 2^{\circ}$	300°	RP8626-01SND*	21/4
RP8606-01SND	21/4	40	2	80	$71 / 2^{\circ}$	300°	RP8627-01SND*	21/4
RP8640-01SND	$11 / 2$	20	2	40	15°	300°	RP8643-01SND	$11 / 2$
*Single gang unit in 2-gang frame and 2-gang unit in 4 -gang frame. Not available as 3 -gang unit. **Detent angle of RP8622-01SND is $111 / 4^{\circ}$.								
NOTE: Impedance should be specified as a part of the model number by the appropriate code letter (see Ordering Information and Impedance Code on Page 3. In this chart, $\mathrm{S}(50,000 \Omega)$ is used in the model number only as an example. Since there is no output impedance specified in potentiometer circuits, the code letter N (not applicable) should be used for the output impedance section of the model number. Altec Calibrated Grid Control Potentiometers are available with the following impedance values:								
1000Ω (N - Specify value)				10,000 $\Omega(\mathrm{M})$		50,000 Ω (S)	250,000 Ω (X)	
$5000 \Omega(\mathrm{~L})$				25,000 $\Omega(\mathrm{R})$		100,000 Ω (T)	500,000 $\Omega(\mathrm{Y})$	

Unbalanced
Balanced

The Altec series of Precision Measuring Equipment, primarily intended for use in Gain Sets and for measurements of transmission levels, consists of Altec Precision Decade Attenuators and Altec Precision Impedance Matching Networks. Fixed networks such as Fixed Loss Pads, Minimum Loss Matching
Pads, and Bridging Pads also are included in this section.

PRECISION DECADE ATTENUATORS (DA8735-8746)
The Altec Precision Decade Attenuator is designed as a 10 -step unit with a 15 -degree detent angle with a total rotation of 150 degrees. To insure best results and continuing accuracy over an indefinite period, steady sine wave power input levels should not exceed 1 watt. On the other hand, program material up to 5 watts can be handled for an unlimited time. These attenvators are available in either the " T " or " H " type of circuitry, with 0.1 , 1,
or 10 db steps, and with either 150 or 600 ohms impedance A , or dial is supplied with each unit. Additional specifications are listed in
Table IX.

Bridged-T

TABLE IX: Precision Decade Aftenuators					
Mode! Number	Circuit	Size	Impedance	DB per Step	Total DB Loss
DA8735-01KKD	Unbalanced-T	$11 / 2$	$150 \Omega 2$	0.1	1
DA8736-01GGD	Unbalanced-T	$11 / 2$	600Ω	0.1	1
DA8737-01KKD	Unbalanced-T	$11 / 2$	$150 \Omega 2$	1	10
DA8738-01GGD	Unbalanced-T	$11 / 2$	$600 \Omega 2$	1	10
DA8739-01KKD	Unbalanced-T	$11 / 2$	$150 \Omega 2$	10	100
DA8740-01GGD	Unbalanced-T	$11 / 2$	$600 \Omega 2$	10	100
DA8741-01KKD	Balanced-H	$21 / 4$	$150 \Omega 2$	0.1	1
DA8742-01GGD	Balanced-H	$21 / 4$	600Ω	0.1	1
DA8743-01KKD	Balanced-H	$21 / 4$	$150 \Omega 2$	1	10
DA8744-01GGD	Balanced-H	$21 / 4$	600Ω	1	10
DA8745-01KKD	Balanced-H	$21 / 4$	$150 \Omega 2$	10	100
DA8746-01GGD	Balanced-H	$21 / 4$	600Ω	10	100

PRECISION DECADE SET (9711, 9712)
The Altec Precision Decade Attenuator model 9711 is a combination of three precision decade attenuators, DA8742-01GGD, DA8744-01GGD, and DA8746-01GGD, which have been assembled in one case with separate controls, but common input and output terminals. Thus, one precision measuring set does the work of three. The 9711 is an unbalanced bridged-T circuit, matching a 600 -ohm input circuit, and provides up to 111 dB of attenuation in steps of 0.1 dB each. As with the individual decade attenuators, program material up to 5 watts can be handled for an unlimited time. The model 9712 is similar to the 9711 , but is available in a balanced- H circuit.

PRECISION VARIABLE IMPEDANCE

MATCHING NETWORKS (PN8747-8754)

Altec Precision Variable Impedance Matching Networks consist of a series of fixed matching pads selectable by a rotary switch. These networks are ideal for Gain Sets since they are designed to permit a high degree of accuracy in matching impedances and are calibrated for relative losses due to matching of unequal impedance ratios. The networks are available in both the " T " and " H " type of circuit, and with 150 - or 600 -ohm input impedance with a series of output impedances. These units have a total rotation of 140 degrees and detent angles of 20 degrees. A knob and dial is supplied with each network. Since these networks are reversible, they may be matched to either input or output impedances. The " H " circuit networks may be balanced to common center or to ground. Other specifi-
cations are listed in Table X. cations are listed in Table X.

SUPPLIED WITH DETENTS

UNBALANCED			SPECIFICATIONS									BALANCED		
Model	Circuit	Size	Input Impedance	Insertion Loss in DB for Output Impedance								Model Number	Circuit	Size
Number				30s2	50Ω	125?	150@	200s.	250@	500@	6008			
PN8747-01KND	Unbalanced-T	11/2	150』	20	20	20	0	10	10	10	20	PN8751-01KND	Balanced-H	21/4
PN8748-01KND	Unbalanced-T	11/2	150』	20	20	20	20	20	20	20	20	PN8752-01KND	Balanced- H	21/4
PN8749-01GND	Unbalanced-T	11/2	600Ω	20	20	20	20	10	10	10	0	PN8753-01GND	Balanced- H	21/4
PN8750.01GND	Unbalanced-T	11/2	6008	20	20	20	20	20	20	20	20	PN8754-01GND	Balanced-H	21/4

MOTION PICTURE PROJECTION AND

TURNTABLE FADERS (FA8800-8801, FA8804-8805)
In the projection of motion pictures, the changeover from one reel of film to the next should be imperceptable ... not only visually, but audibly as well. In radio broadcasting, the switching over from one turntable to another must be equally subtle. Altec Motion Picture Projection and Turntable Faders are designed to accomplish these functions.
The Altec Fader is available in ladder or potentiometer circuit configuration,
and with either 16 or 22 steps on each side of infinity. Knob and dial are supplied with each unit, and the calibrated dials are marked in red on the right side and in white on the left side for ease of operation. Detents are at 10 degrees on the 16 -step model and at $71 / 2$ degrees on the 22 -step unit. Impedances up to 600 ohms are available, as well as values up to 500,000 ohms for the potentiometer models. Available for stereo application are 2 -gang or 4 -gang units on special order. For other than stereo application these units may be ordered as single, 2 -, $3-$, or 4 -gang faders. Table XI lists other specifications for these units and the circuitry is shown in the illustration below.

SUPPLIED WITH DETENTS

| TABLE XI: Motion Picfure Projection and Turntable Faders | | | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model
 Number | Circuit | No. of
 Steps On
 Each
 Side of
 Infinity | Total
 No. of
 Steps | OB per
 Step | Range | Detent
 Degrees | Total
 Rotation | Frame
 Size |
| FA8800-01GGD | Unbalanced Ladder | 16 | 32 | 3 | $0-45-\infty-45-0$ | 10° | 320° | $11 / 2^{\prime \prime}$ |
| FA8801-01GGD | Unbalanced Ladder | 22 | 45 | 2 | $0-42-\infty-42-0$ | $71 / 2^{\circ}$ | $3371 / 2^{\circ}$ | $21 / 4^{\prime \prime}$ |
| FA8804-01SND | Unbalanced Pot | 16 | 32 | 3 | $0-45-\infty-45-0$ | 10° | 320° | $1 / 2^{\prime \prime}$ |
| FA8805-01SND | Unbalanced Pot | 22 | 45 | 2 | $0-42-\infty-42-0$ | $71 / 2^{\circ}$ | $3371 / 2^{\circ}$ | $21 / 4^{\prime \prime}$ |

STEREO PAN POTENTIOMETERS (PP8806-8809, PP8812, PP8814)
The advent of stereo and multi-channel transmission created problems in transferring the apparent position of a sound source from one section of the recording field to another. The arrival time of a sound will influence the apparent position of its source, and the intensity of that sound can offset the effects of its arrival time. A change of only 3 db in intensity is enough to displace the apparent source across the recorded field, an effec which may be controlled by the use of Altec Stereo Pan Potentiometers.
Either a two-channel or a three-channel pan pot may be used to pick up a monaural sound and transfer it to any "geometric" position desired in the final stereo transmission. A stereo pan potentiometer is a two-channel sysem. Two oppositely wound controls are ganged in such a way that the 3 db down point of each control occurs at zero degrees. (For a three channel system, three controls are ganged so that the 3 db down point
occurs at 45 degrees to either side of the center.) At either 90 -degree position, the extreme opposite channel is at infinite attenuation.
The unusual taper of each winding demands 16 positions in each unit in order to attain the smoothest transition throughout the audible range of control. Attenuation to extremes is rapid at both ends, but low in the region of overlap from one section to another. This attenuation rate is precise and conforms to the exacting calculations which govern angular displacement in the sound field as indicated by changes in level.
These Altec Stereo Pan Pots have a $12-\mathrm{dB}$ insertion loss and are designed for 600 -ohm input and output impedances. The rotary models have 270 for $600-0$ ohm input and output impedances. The rotary models have 270 degrees of rotation. Special frames for plug-in mounting and special Dial and knob are supplied with the rotary model but straight line units are supplied with knob only. Additional specifications are listed in Table XII and the circuitry is shown in the illustrations below.

SUPPLIED
WITHOUT
DETENTS

TABLE XII: Stereo Pan Pots						
Straight Line Model Number	Rotary Model Number	Channels	No. of Steps		Attenuation	Escutcheon Required
PP8806-02GG	PP8808-02GG	1 into 2	16	$\begin{gathered} \text { (Right) } \\ (\text { Left }) \end{gathered}$	$\begin{aligned} & 2--3 d b-0 \\ & 0--3 d b-0 \end{aligned}$	9628
PP8807.03GG	PP8809-03GG	1 into 3	22	$\begin{gathered} \text { (Right) } \\ \text { (Left) } \end{gathered}$	$\begin{aligned} & 0--3 \mathrm{db}-0--3 \mathrm{db}-0 \\ & \sim-3 \mathrm{db}-0-3 \mathrm{db}-\infty \end{aligned}$	9629
PP8812-05GG	PP8814-05GG	1 into 5	40*	$\begin{gathered} \text { (Right) } \\ \text { (Left) } \end{gathered}$	$\begin{aligned} & \infty--3 \mathrm{db}-0--3 \mathrm{db}-\infty--3 \mathrm{db}-0--3 \mathrm{db}-0 \\ & 0--3 \mathrm{db}-5--3 \mathrm{db}-0--3 \mathrm{db}-\infty--3 \mathrm{db}-0 \end{aligned}$	9633

*Rotary Model PP8814-05GG has 41 steps. Mounting Frame: 9701 Available for straight line models.

ROTARY DIFFERENTIAL ATTENUATOR (RA8811)
Similar to the Stereo Pan Pot, the Altec Rotary Differential Attenuator is a balance control. Unlike the Pan Pot, it does not attenuate to infinity at either end, but does provide up to 10 db of attenuation in twenty steps of 0.5 db each. Both sections are at -5 db when the unit is set at zero. The Differential Attenuator should be ordered by model number (RA8811-01GG). it is $21 / 4$ inches square by 2.30 inches in depth, and weighs 11 ounces.

ATTENUATE
COUNTERCLOCKWISE
 ATIENUATE
CLOCKWISE obs

SUPPLIED WITHOUT DETENTS

ALTEC VU METER RANGE EXTENDERS

Altec has VU Meter Range Extenders available as rotary, adjustable and fixed attenuators. They are designed to extend the range of standard VU meters.

Variable rotary vu meter range extenders - $8700-8712$)

Luch Altec Variable Rotary VU Meter Range Extender consists of a 3900 ohm bridged-T attenuator with building-out resistors at the input. With the 3600 -ohm series resistor in the circuit (see figure to right), the input impedance is 7500 ohms, and the output impedance is 3900 ohms. Two fixed resistors (3100 and 500 ohms) permit the range to start at +4 VU . The terminals of these resistors appear at the back of the unit to permit use of wire-wound adjusting potentiometers for stereo balance or calibration simply by selection of the appropriate solder terminal.
Altec Variable Rotary VU Meter Range Extenders, available for 3900 -ohm impedance only, may be ordered in single-, 2-, 3-, or 4 -gang models. All models are supplied with a knob and dial. Other specifications are listed in Table XIII.

TABLE XIII: Rotary VU Meter Range Extenders						
Model Number	No. of Steps	DB per	Range Clockwise	Detent Angle	Total Degrees of Rotation	Size
VU8700-01VUD	10	1	+4 TO +14	15°	150°	11/2
VU8701.01VUD	10	2	$+4 \mathrm{TO}+24$	15°	150°	$11 / 2$
VL8702.01VUD	12	1	$1 \mathrm{MW}+4 \mathrm{TO}+14$ \& OFF	$111 / 4^{\circ}$	135°	$11 / 2$
VU8703-0IVUD	12	2	$1 \mathrm{MW}+4 \mathrm{TO}+24 \&$ OFF	$111 / 4^{\circ}$	135°	$11 / 2$
VU8704-01VUD	16	1	$+4 \mathrm{TO}+20$	15°.	240°	$21 / 2$
VU8705-01VUD	15	2	+4 TO +34	15°	225°	21/4
VU8706-01VUD	20	1	+4 TO +24	15°	300°	21/4
VU8707.01VUD	20	2	+4 TO +44	15°	300°	21/4
VU8708.0IVUD	18	1	$1 \mathrm{MW}+4 \mathrm{TO}+20$ \& OFF	15°	270°	21/4
VU8709.01VUD	20	2	$1 \mathrm{MW}+4 \mathrm{TO}+40$ \& OFF	15°	$30{ }^{\circ}$	21/4
VU8710.01VUD	30	1	+4 TO +34	$111 / 4^{\circ}$	$3371 / 2^{\circ}$	21/4
VU8711-01VUD*	40	1	+4 TO +44	$71 / 2^{\circ}$	300°	21/4
VU8712-01VUD*	42	1	$1 \mathrm{MW}+4 \mathrm{TO}+44$ \& OFF	$71 / 2^{\circ}$	315°	21/4

*Available as single-gang in 2 -gang frame only.

ADJUSTABLE (By Strapping) VU METER RANGE EXTENDER (VU8010)
The Altec Adjustable VU Meter Range Extender (VU8010-00VU) inserts a fixed loss into a VU meter circuit, permitting the range of the meter to be extended to cover additional levels. It is designed to bridge 600 -ohm lines and may be used in the 3900 -ohm or the 7500 -ohm configuration. Figure the meter range required.

FOR DIMENSIONAL INFORMATION ON FIXED NETWORK CASES SEE PAGE 11

FIXED VU METER RANGE EXTENDER (VU8011)

The Altec Fixed VU Meter Range Extender serves the same purpose as the other extenders, but is designed for those installations where a rotary o an adjustable extender is not needed. The model number of the Fixed VU Meter Range Extender should specify the value of the required pad. For example: model number VU8011-19VU is a fixed extender which will enable the VU meter to indicate 0 db for a true level of +15 dbm , or, for a 0 db indication for a true level of +12 dbm , model number VU8011-16VU

Model No.	Pad Loss	VU Reading	dBm
$8011-04 \mathrm{VU}$	0 dB	0 VU	$=+4$
$8011-05 \mathrm{VU}$	1 dB	0 VU	$=+5$
$8011-06 \mathrm{VU}$	2 dB	0 VU	$=+6$
$8011-16 \mathrm{VU}$	12 dB	0 VU	$=+12$
$8011-19 \mathrm{VU}$	15 dB	0 VU	$=+15$

BASIC VU METER CIRCUITS

 WITH CORRECT IMPEDANCES INDICATED should be ordered. To order, see representative ordering information below.

MIXER NETWORKS (MN8000-8001)
Mixer Networks should be used where two or more attenuator controls are combined to build a mixer system. They allow a number of input signals to be paralleled and matched to the desired line impedance. The Altec series of Mixer Networks will handle any number of mixer branches up to 20 (more on special order) and, because they are reversible, may be used not only as mixer or combining networks, but also as splitting networks - by inverting the input and output. Altec Mixer Networks will sustain steady sine-wave tones up to a level of +30 dBm (1 waft). Designed for a standard impedance of 600 ohms, they may be ordered for 150 -ohm impedance and are available in both the unbalanced (MN8000-series) or
the balanced (MN8001-series) configuration as indicated in the illustration below.
To order, specify the model number including the number of inputs and the impedance desired. Table XIV lists only the unbalanced models and will serve as an ordering guide. To order a balanced version, merely substitute the MN8001- series number for the basic model number shown in the table. For example: MN8000-04GG is an unbalanced mixer network with four also with four inputs and 600 -ohm impedance. (See Page 3 for detailed also with four inputs and $600-$ ohm impedance. (S
ordering information including the impedance code.)

A

C

MN8000- Series Unbalanced

MN8001-Series Balanced

TABLE XIV: Mixer Networks							
Model Number*	Number of Inputs	DB Loss	Case Size	Model Number*	Number of Inputs	DB Loss	Case Size
MN8000-02GG	2	6.0	A	MN8000-12GG	12	21.6	D
MN8000-03GG	3	9.5	B	MN8000-13GG	13	22.3	D
MN8000-04GG	4	12.0	C	MN8000-14GG	14	22.9	D
MN8000-05GG	5	14.0	C	MN8000-15GG	15	23.5	D
MN8000-06GG	6	15.6	C	MN8000-16GG	16	24.1	D
MN8000-07GG	7	16.9	D	MN8000-17GG	17	24.6	D
MN8000-08GG	8	18.1	D	MN8000-18GG	18	25.1	D
MN8000-09GG	9	19.1	D	MN8000-19GG	19	25.6	D
MN8000-10GG	10	20.0	D	MN8000-20GG	20	26.0	D
MN8000-11GG	11	20.8	D				

*Model numbers shown are for unbalanced. Use MN8001- series for balanced circuits.

REPRESENTATIVE MIXER CIRCUITS

| TABLE XV: R Value in Ohms for Various Mixer Circuits | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Imped-
 ance | Two
 Position | Three
 Position | Four
 Position | Five
 Position | Six
 Position | Eight
 Position |
| 30 | 10 | 15 | 18 | 20 | 21.42 | 23.3 |
| 50 | 16.6 | 25 | 30 | 33.3 | 35.7 | 38.8 |
| 150 | 50 | 75 | 90 | 100 | 107 | 116.8 |
| 200 | 66.6 | 100 | 120 | 133 | 142.8 | 155.5 |
| 250 | 83.3 | 125 | 150 | 166 | 178.5 | 194.6 |
| 500 | 166 | 250 | 300 | 333 | 357 | 388 |
| 600 | 200 | 300 | 360 | 400 | 428.4 | 466 |
| Minimum Loss Values (in Decibels) | | | | | | |
| Ladder
 Circuit | 12 | 15.5 | 18 | 20 | 21.6 | 24.1 |
| Bridged-T
 Circuif | 6 | 9.5 | 12 | 14 | 15.5 | 18.1 |

Minimum Loss
with Ladders - 18 db
with Bridged T-12 db FOUR-POSITION MIXER

If attenuators are switched to two different mixer nets, each Q circuit should be isolated with a line-to-line transformer.

MINIMUM LOSS PARALLEL MIXER CIRCUIT

BRIDGING, MATCHING, AND LOSS PADS

Occasionally the audio engineer will encounter a situation where an amplifier provides more gain than is desired. To compensate for this condition, a Loss Pad may be used to protect other equipment in the line
from possible overload without adding any distortion to the signal or program material. Also, a Loss Pad can be used to provide impedance stabilization between circuits.

ADJUSTABLE LOSS PAD (Unbalanced Circuit) (LP8012) The Altec LP8012-00GG (unbalanced-T circuit) is an adjustable fixed-loss pad for those installations where the value of the pad must be changed from time to time. These fixed loss pads permit selection (by strapping) of any loss up to 63 dB in 1 dB steps. The maximum power handling capacity is +30 dBm (1 watt).

LP8012-00GG

B

STRAPPING EXAMPLE:
3 dB pad $=$ strap 3-4.
Input on 1 \& 2,
Output on 5 \& 14.

BRIDGING PADS (BP8008-8009)

Altec Bridging Pads are designed for those applications where high impedance bridging is desired across a 600 -Ohm line output. These bridging pad are available in unbalance (BP8008-series) and balanced (BP8009-series) configurations, as illustrated below. Input and output impedances should be specified (as with Minimum Loss Matching Pads) by code as a part of the model number when bridging pads are ordered. For example: an unbalanced bridging pad with a 15,000 -Ohm input and a $600-\mathrm{Ohm}$ output is model number BP8008-OOMG. Detailed ordering information will be found on Page 3.

MINIMUM LOSS MATCHING PADS

Altec Minimum Loss Matching Pads are designed for the exact matching of frequently used line impedances. The combinations available and the corresponding amount of loss in dB is shown in Table XVI. Losses greater than the minimum loss specified in the Table are available on special order, but losses greater than (although not less than) that valud is 11.43 db for the $150-t 0-600$ pad on special order.

These Altec Minimum Loss Matching Pads are available in unbalanced (L) and balanced (U) circuitry. The MP8003-series are balanced while the MP8002-series are unbalanced as shown in the illustrations below. To order specify the model number and the input and output impedance desired. For example: the MP8003-OOGB is a balanced pad with an input impedance of 600 Ohms (G) and an output impedance of 50 Ohms (B).

STRAPPING EXAMPLE:
3 dB pad $=$ strap 2-3 and 14-15.
Input on 1 \& 13,
Output on $4 \& 16$.
5 dB pad $=$ strap 2-5 and 14-17
Input on 1 \& 13,
Output on $6 \& 18$
ADJUSTABLE LOSS PAD (Balanced Circuit) (LP8013)
The Altec LP8013-00GG (balanced-H circuit) is an adjustable fixed-loss pad the same as the LP8012-00GG, except that it represents a balanced-H circuit. Any loss up to 63 dB in 1 dB steps is permitted by simply strapping the appropriate terminals, and it has a maximum power handling capacity
of +30 dBm .

FIXED LOSS PADS (Balanced \& Unbalanced Circuits) (LP8004-8005)

These Altec Fixed Loss Pads are available in unbalanced-T (LP8004- series) or balanced-H (LP8005- series) circuits and in any amount of loss up to 60 dB . Standard impedance is 600 ohms, but other impedance values are available on special order.
To order, specify the model number, amount of loss required and impedance value. For example: LP8004-30GG is an unbalanced pad with a 30 dB loss and 600 ohms impedance (see Page 3 for the impedance code), and a balanced pad with a $23-\mathrm{dB}$ loss and 150 -ohm impedance would be model number LP8005-23KK.

[^0]: of Indicated－VU to actual dBm

