REMOTE-CONTROL SYSTEMS FOR BROADCASTING PRODUCTION EQUIPMENT SYSTEM SERVICE AND COMMON MESSAGES

June 1986

CONTENTS

Introc	duction	3
Part 1	1 - System service messages	5
Chap	oter 1 - General concepts	5
1.	System service tasks	5
2.	Blocking and segmenting	6
3.	Addressing virtual machines	6
4.	Assigning, linkages	6
5.	Assigning groups	7
6.	Supervisory level groups	7
7.	Virtual groups	8
8.	Assignment messages overview	8
9.	8.1. Messages to bus controller8.2. Messages from the bus controllerSelecting virtual machines/groups	9
10.	Information fields (I/F) within the bus controller	10
11.	The bus clock	10
	11.1. Bus clock.11.2. Machine internal clock.11.3. Time synchronization.	
Chap	oter 2 - System service messages	13
1.	Index of* keywords, mnemonics and information field names	13
2.	Keywords	14
3.	Information fields	

Part 2	2 - Common messages	21
Chap	ter 1 - General concepts	21
1.	Commands and responses	21
2.	State machine and information transfer	21
3.	Information fields (I/F)	22
4.	Error and failure messages	22
5.	Enquiry concept	23
6.	Standard and extension keywords	23
7.	Procedures	23
8.	The timeline concept	24
9.	Events	24
10.	Tasks with repeated responses	25
11.	Dialect identification	25
Chap	ter 2	27
Com	mon messages	27
1.	Index of keywords mnemonics and information field names	27
2.	Keywords	
3.	Information fields	

Introduction

Document Tech. 32 45 describes the specification of a digital remote control system for broadcasting production equipment. It defines completely the electrical/mechanical level (level 1) and the supervisory level (level 2) of the interface. The remaining two levels - the system service level (level 3) and the virtual machine level (level 4) - are defined in terms of function and control message syntax only.

Part 1 of this supplement to Tech. 3245 completes the definition of the system service level by detailing the system service messages. Part 2 defines those virtual machine messages which are common to all types of virtual machine - the common messages. Type-specific virtual machine messages are defined in other supplements to Tech. 3245.

In order to implement a complete network, the system designer therefore requires:

Document Tech. 3245: the general specification Supplement 1: system service and common messages

and one or more other supplements appropriate to the category or categories of equipment to be used.

The specification described in this supplement has been developed jointly with the SMPTE, and is functionally identical to that to be published as an SMPTE Recommended Practice.

Part 1

System service messages

Chapter 1

General concepts

This chapter contains a general explanation of some of the concepts used in the formulation of the system service message set. It constitutes tutorial information, and is intended to assist in the understanding of the specification in <u>Chapter 2</u>.

1. System service tasks

System service messages can affect all participants on the bus, tributaries as well as the bus controller; their effect, however, differs as between tributaries and the bus controller.

- Some system service messages address the bus controller only. These originate in a tributary and cause the bus controller to set up a new internal condition, or to originate further messages.

Examples:	ASSIGN	LINKAGE,
DEASSIGN	LINKAGE,	
ASSIGN	SUPERVISOR	Y LEVEL GROUP
DEASSIGN	SUPERVISOR	Y LEVEL GROUP,
ASSIGN	VIRTUAL GRO	OUP,
DEASSIGN	VIRTUAL GRO	OUP.

- Other system service messages are sent by the bus controller to accomplish linkage tasks in tributaries.

Examples: VIRTUAL GROUP ATTACHE, VIRTUAL GROUP DISCONNECT, VIRTUAL MACHINE/GROUP SELECT. - Finally there are system service messages which accompany virtual machine messages from source to destination and have no practical effect on the bus controller. These are simply relayed by the bus controller.

Examples: BLOCK, INITIAL SEGMENT, SUBSEQUENT SEGMENT.

Notes in the system service message list indicate the effect of the messages or the tributary and the bus controller respectively, and give detailed information about their effect.

2. Blocking and segmenting

Detailed information about blocking and segmenting of virtual machine messages by the use of the corresponding system service messages is given in Tech. 3245, Chapter 4.

3. Addressing virtual machines

Since more than one virtual machine may be connected logically to a tributary, the address of every virtual machine to in two parts:

- the tributary address,
- the virtual machine number which identifies the virtual machine connected to this tributary.

Messages which specify a virtual machine must carry both tributary address and virtual machine number as joint parameters. When a single virtual machine only is attached to a tributary address, the virtual machine number defaults to zero (00h).

4. Assigning, linkages

In order to establish a linkage it is necessary to make an entry in the linkage directory of the bus controller. Unless the bus controller is very simple (setting up linkages by thumbwheels or a local keyboard only), system service messages originating In any tributary may be used to establish a linkage entry.

The relevant messages are

ASSIGN LINKAGE and DEASSIGN LINKAGE.

Either message carries parameters which specify the tributary address and virtual machine number of both source and destination; each such message assigns/deassigns a unidirectional linkage only, from one source to one destination.

In the assignment of groups the tributary address may be replaced by a supervisory level group address, and/or the virtual machine number may be replaced by a virtual group number.

Application details, examples of tributary linkage, and a sample linkage directory are given in Tech. 3245, Chapter 4.

The linkage of groups is described below.

5. Assigning groups

The operational requirement for the grouping of virtual machines may come from individual tributary, or from an "assignment" virtual machine. However, only the bus controller is able to establish groups, and system service messages are required therefore to instruct the bus controller to take the necessary actions.

6. Supervisory level groups

In order to set up a controlled supervisory level group, two actions need to be taken by the "assigning" virtual machine:

- to direct the bus controller to assign a linkage between the controlling virtual machine and the newly defined supervisory group;
- to direct the bus controller to assign all tributaries that are to be members of the new group.

Linkage assignment is initiated by an ASSIGN LINKAGE message to the bus controller as described above, but using the desired supervisory level group address and virtual group number, instead of a tributary address and virtual machine number.

Where a single virtual machine only is attached to each and every tributary within a supervisory level group, the virtual group number defaults to zero (00h).

Assignment of the required tributaries to the group is initiated by multiple system service messages, using the command:

ASSIGN SUPERVISORY LEVEL GROUP

to the bus controller. In reaction to each of these massages the bus controller generates a supervisory level GROUP ASSIGN message for the appropriate tributary.

The ASSIGN SUPERVISORY LEVEL GROUP message carries two parameters:

- the tributary select address, which identifies the appropriate tributary; - the desired supervisory level group select address.

Deassignment is performed similarly using the messages:

DEASSIGN LINKAGE and DEASSIGN SUPERVISORY LEVEL GROUP.

7. Virtual groups

In order to set up a controlled virtual group, two actions need to be taken by the assigning virtual machine:

- to direct the bus controller to assign a linkage between the controlling virtual machine and the newly defined virtual group;
- to direct the bus controller to assign all virtual machines that are to be members of the new group.

Linkage assignment is initiated by an ASSIGN LINKAGE message to the bus controller as described above, but using the desired virtual group number instead of the virtual machine number following the tributary supervisory level SELECT or GROUP SELECT address.

Assignment of the required virtual machines to the group is initiated by multiple system service messages using the command ASSIGN VIRTUAL GROUP to the bus controller.

In reaction to each of these messages the bus controller generates the system service message VIRTUAL GROUP ATTACH and sends it to the system service level of the tributary serving the required virtual machine.

Where a virtual group comprises virtual machines spread across several tributaries, it is the responsibility of the assigning station to direct the bus controller to construct the appropriate supervisory level group using the ASSIGN SUPERVISORY LEVEL GROUP command.

Each ASSIGN VIRTUAL GROUP message carries the following parameters:

- the tributary select address and virtual machine number of the virtual machine,
- the desired virtual group number.

Deassignment is performed similarly using the messages DEASSIGN LINKAGE and DEASSIGN VIRTUAL GROUP. The message used by the bus controller to cancel the group assignment of an individual virtual machine is VIRTUAL GROUP DISCONNECT.

8. Assignment messages overview

The following tables summarize all system service messages which are used for assigning/deassigning linkages and groups, together with their parameters and their effects.

8.1. Messages to bus controller

<u>Message</u>	Parameters	Action by bus controller		
ASSIGN/ DEASSIGN LINKAGE	Source tributary address Source virtual machine number tributary address/group address Destination virtual machine number/ virtual group number	set up internal linkage directorv		
ASSIGN/ DEASSIGN SUPERVISORY LEVE ASSIGN/ DEASSIGN VIRTUAL GROUP	Tributary address Supervisory level group address Virtual tributary address machine number Virtual group number	<pre>Send supervisory level GROUP ASSIGN/DEASSIGN send VIRTUAL GROUP ATTACH/ VIRTUAL GROUP DISCONNECT to appropriate virtual machine</pre>		
8.2. Messages from the bus controller				
<u>Message</u>	Parameters	Action by tribut		
VIRTUAL	Virtual machine number	commence/cease		

ATTACH/ DISCONNE Virtual group number

GROUP

er

to react to messages for the specified

virtual group number

9. Selecting virtual machines/groups

To switch the data flow path to a specified virtual machine/group within the system service level of the tributary, or to select the correct virtual circuit linkage for the-indicated virtual machine within the bus controller,

VIRTUAL MACHINE/GROUP SELECT

is used. Details are described in Tech. 3245, Chapter 4.

10. Information fields (I/F) within the bus controller

In a manner similar to virtual machines the bus controller contains information which is arranged in information fields (for details of the information field concept, see Part 2, Chapter 1 of this document).

The bus controller information field comprises

- a table of all linkages currently established,
- a table of all supervisory level groups,
- a table of all virtual groups,
- status information for the bus controller.

11. The bus clock

Many applications require a common time scale across several virtual machines. This is usually implemented as a (software) clock, the "machine internal clock", which must be synchronized by a simultaneous command to all appropriate virtual machines.

Of all the bus participants only the bus controller can guarantee a simultaneous transmission of a preset command for those clocks. Therefore, the bus controller is designated as the keeper of a bus clock that is used to synchronize the timelines in all appropriate tributaries.

To support this general concept, the following assumptions are made:

11.1. Bus clock

If present in the system, the bus clock is resident in the bus controller.

The bus clock is set by means external to the control bus.

The bus clock is incremented by an external, unspecified signal ("ticks") common to all virtual machines.

11.2. Machine internal clock

The machine internal clock is resident in the virtual machine level of the tributary.

The machine internal clock is preset by messages carried on the control bus.

The machine internal clock is incremented by the same external, unspecified signal ("ticks") as the bus clock.

The machine internal clock may be selected as the source of the machine TIMELINE.

11.3. Time synchronization

Machine internal clocks are preset by the bus controller.

The bus controller, using the supervisory level message GROUP SELECT ALL CALL, transmits, to all virtual machines connected to the bus, the common message TIMELINE RUN, with the time value from the bus clock.

The bus controller is responsible for transmitting the time consistent with the common external "tick" signal and the intended use of time in the system.

The bus controller performs synchronization of the system In response to the system service message REQUEST TIME TRANSMISSION.

Chapter 2

System service messages

1. Index of* keywords, mnemonics and information field names

He	x Keyword	(mnemonic)	ł	Hex	Information field name	(mnemonic)
00	SYSTEM SERVICE NO OPERATION	(SNOP)				
01	reserved for BEGIN	(RBGN)				
02	reserved for END	(REND)				
03	SYSTEM SERVICE RESET	(SRST)				
04	INITIAL SEGMENT	(ISGT)				
05	SUBSEQUENT SEGM M	(SSGT)				
06	BLOCK	(BLCK)				
07	VIRTUAL MACHINE/GROUP SELECT	(VMGS)				
08	SYSTEM SERVICE ERROR	(SERR)				
09	VIRTUAL GROUP ATTACH	(VGAT)				
	VIRTUAL GROUP DISCONNECT	(VGDT)				
OB						
OC						
OD						
OE						
OF						
10	ASSIGN LINKAGE	(ALNK)	10		KAGE	(LINK)
11	DEASSIGN LINKAGE	(DLNK)	11		ATUS	(STAT)
12	ASSIGN SUPERVISORY LEVEL GROUP	(ASGP)	12		PERVISORY LEVEL GROUP	(SGRP)
13	DEASSIGN SUPERVISORY LEVEL GROUP	(DSGP)	13	VIR	TUAL GROUP	(VGRP
14	ASSIGN VIRTUAL GROUP	(AVGP)	14			
15	DEASSIGN VIRTUAL GROUP	(DVGP)	15			
16	BC READ	(BCRD)	16			
17	BC I/F ITEM RESPONSE	(BIRE)	17			
18	REQUEST TIME TRANSMISSION	(RQTT)	18			
19	BUS CONTROLLER USER DEFINED	(BCUD)	19			
1A			1A			
1B			1B			
1C			1C			
1D			1D			
1E			1E	FX ²⁷		(OTEX)
1F	EXTENSION	(SEXT)	FF	EX	TENSION	(SIEX)

Notes: 1. Information field names 03h-0Fh are reserved.

2. The following convention is used in all messages - system service, common and typespecific:

- most-significant byte (MSB) is transmitted first;

- least-significant bit (lsb) Is transmitted first.

2. Keywords

In the following definitions, the different effect of the message when received by a tributary, compared with the effect when received by a bus controller, is shown:

trib - (effect at tributary)

bc - (effect at bus controller).

Messages which are relayed by the bus controller are so indicated.

Hex Keyword

00 SYSTEM SERVICE NO OPERATION trib - & - bc System service no operation

relayed by bc

Format: <SYSTEM SERVICE NO OPERATIN>

01	reserved for BEGIN	These codes are reserved for BEGIN and
02	reserved for END	END delimiters They are used in the form.

reserved for END END delimiters. They are used in the form: <BEGIN> <command or I/F list> <END>

relayed by bc

03 SYSTEM SERVICE RESET trib - System service reset. Resets all system service level functions to the power-up default state:

Virtual machine select - 0 Virtual groups disconnected Segmentation off

bc - Select virtual circuit 0 for the addressed tributary.

Sent by bc

Format: <SYSTEM SERVICE RESET>

04 INITIAL SEGMENT trib - Directs the system service level to commence segment assembly.

bc - Do not parse message further.

relayed by bc

Format: <INITIAL SEGMENT> <SEGMENT COUNT> 8-bit binary unsigned number; count zero is the final segment. <SEGMENT DATA . . .>

Note: The final byte of a data segment shall be the final byte of a supervisory level block.

SUBSEQUENT SEGMENT

trib - Directs the system service level to continue segment assembly.

bc - Do not parse massage further

relayed by bc

Note 1: The final byte of a data segment shall be the final byte of a supervisory level block.

Note 2: A tributary with multiple virtual machines attached must provide separate segmentation facilities for each virtual machine.

06 BLOCK

05

trib - Directs the system service level to disassemble virtual machine messages which have been concatenated within a single supervisory level frame. The BLOCK command shall be employed to delimit messages on every occasion where message concatenation is employed.

bc - Look at end of block for system service message

<BLOCK>

relayed by bc

Format:

<BYTE COUNT> 8-bit binary unsigned number. Specifies the length of the individual blocked message, in bytes, not including the byte count

<BLOCK DATA . . .>

07 VIRTUAL MACHINE/GROUP SELECT

trib - Directs the system service level to select the specified virtual machine or group.

bc - Selects the virtual circuit linkage for the indicated virtual machine.

Format: <VIRTUAL MACHINE/GROUP SELECT> <VIRTUAL MACHINE/GROUP NUMBER> 8-bit binary unsigned number in the range 00h-EFh (machine), F0h-FFh, (group). 00h is default.

08 SYSTEM SERVICE ERROR

trib - & be - Advises that the system service command in the last frame received had not been understood, or could not be performed. Following receipt of a SYSTEM SERVICE ERROR, no further processing will take place on the supervisory level frame, although any virtual machine message(s) encountered up to that point will still be forwarded to their destination(s).

relayed by bc

Format: <SYSTEM SERVICE ERROR> <EXEC CODE> 8 bits

	00 - parse error
	01 - cannot do by design
	02 - insufficiently equipped
	03 - buffer overflow
	04 - invalid keyword argument
	05- destination trib. unavailable
<byte count=""></byte>	8 bits; not including the byte count
<offending com<="" td=""><td>IMAND></td></offending>	IMAND>

09 VIRTUAL GROUP ATTACH

trib - Directs the system service level to attach the specified virtual machine to the specified virtual machine group.

bc - Never received

sent by bc

0A VIRTUAL GROUP DISCONNECT

trib - Disconnects the specified virtual machine from the specified virtual machine group.

bc - Never received

sent by bc

Format: as VIRTUAL GROUP ATTACH. 00h removes all group assignments for a particular virtual machine.

10 ASSIGN LINKAGE trib - Never received

bc - Directs the bus controller system service level to establish a unidirectional linkage.

Format <assi< th=""><th>GN LINKAGE> <source/> <destination></destination></th></assi<>	GN LINKAGE> <source/> <destination></destination>
Where: SOURCE =	Supervisory level select address + virtual machine number (default is 00h)
and: DESTINATION = or =	Supervisory level select address + virtual machine number OR virtual group number (default is 00h) Supervisory level group select address + virtual group number (default is 00h)

11 DEASSIGN LINKAGE trib - Never received

bc - Directs the system service level to terminate to terminate the specified unidirectional linkage.

Format: as ASSIGN LINKAGE.

12 ASSIGN SUPERVISORY LEVEL GROUP trib - Never received

bc - Directs the bus controller to assign a tributary to the designated group.

Format: > > > a a a a

13 DEASSIGN SUPERVISORY LEVEL GROUP trib - Never received

bc - Directs the bus controller to remove a tributary from a designated group.

Format: as ASSIGN SUPERVISORY LEVEL GROUP

14 ASSIGN VIRTUAL GROUP trib - Never received

bc - Directs the bus controller to assign a virtual machine to a virtual group.

Where <MACHINE> = Tributary select address + virtual machine number

15 DEASSIGN VIRTUAL GROUP trib - Never received

bc - Directs the bus controller to remove a virtual machine from a virtual group.

Format: as ASSIGN VIRTUAL GROUP

16 BC READ trib - Never received

be - Directs the bus controller to transmit the instantaneous contents of the information field.

Format: <BC READ> <I/F NAME>

Note: The I/F NAME may be replaced by several names wrapped in a BEGIN/END construct.

17 BC I/F ITEM RESPONCE

trib - Contains the I/F data in response to a <BC READ> command.

bc - Never received.

Format:

Sec I/F ITEM RESPONSE>

Note: Several I/F NAMES/VALUES may be wraped in a BEGIN/END construct.

18 REQUEST TIME TRANSMISSION trib - Never received

bc - Directs the bus controller to transmit the value of the master system clock to all virtual machines using the common message TIMELINE RUN.

Format: <REQUEST TUM TRANSMISSION>

19 BUS CONTROLLER USER DEFINED trib - Never received

bc - Directs the bus controller to enter the user-defined command state. On entry to such a state the specific bus controller parses the data bytes which follow. This will be manufacturer-, operator-, and/or installation-dependent.

Format:

<BUS CONTROLLER USER DEFINED>

<BYTE COUNT>

8-bit binary unsigned number. Specifies the length of the

command in bytes. not including the byte count itself.

<RAW DATA>

1F EXTENSION

trib - & bc - Directs the tributary or bus controller to enter the extension command set for the following single command only. They shall then resume execution of the basic command set.

Format: <EXTENSION> <EXTENSION SET COMMAND> (one or more bytes)

3. Information fields

- 10 LINKAGE Contains all the linkage information.
 - Format: <LINKAGE> <BEGIN> <SOURCE> <DESTINATION> <SOURCE> <DESTINATION> <END>

Where SOURCE =	Supervisory level select address + virtual machine number
	(default is 00h).
and DESTINATION =	Supervisory level select address + virtual machine or group number
	(default is 00h)
or	Supervisory level group select address + virtual group number
	(default is 00h)

When necessary, the linkage information may be segmented.

11 STATUS

Tallies the system service level status.

Format:	<status></status>		
	<status report=""></status>	00h	Linkage directory established; clock available
		01h	No linkage directory; clock available
		10h	Linkage directory established; no clock available
		11h 1	No linkage directory: no clock available

12 SUPERVISORY LEVEL GROUP

Contains all active supervisory level (SIL) groups, excluding All Call, with the associated tributary addresses.

Format:	<supervisory group="" level=""></supervisory>			
	<s group="" identifier="" l=""> 16-bit binary unsigned number</s>			
	<begin></begin>			
	<s address="" l="" select=""></s>			
	<s address="" l="" select=""></s>			
	<s address="" l="" select=""></s>			
	<end></end>			

Multiple groups may be heated with BEGIN/END.

When necessary, the message may be segmented.

13 VIRTUAL GROUP

Contains all active virtual groups with the associated virtual machine identifiers.

Format:	<virtual group=""></virtual>	
	<virtual group="" number=""></virtual>	8-bit binary unsigned nunber in the range F0h
		to FFh.
	<begin></begin>	
	<supervisory address="" level="" select=""></supervisory>	
	<virtual machine="" number<="" td=""><td>> 8-bit binary unsigned number in the range</td></virtual>	> 8-bit binary unsigned number in the range
		00h to EFh.
	<supervisory address="" level="" select=""></supervisory>	
	<virtual machine="" number<="" td=""><td>></td></virtual>	>
	<supervisory address="" level="" select=""></supervisory>	
	E) ID	

<END>

Multiple groups may be nested with BEGIN/END.

When necessary, the message may be segmented.

FF EXTENSION

Indicates that the next information field name is a zember of the extension set.

Format: <EXTENSIM <EXTENSION SET I/F NAME>

Part 2

Common messages

Chapter 1

General concepts

This chapter contains a general explanation of some of the concepts used in the formulation of the common message set. It constitutes tutorial information, and is intended to assist in the understanding of the specification in <u>Chapter 2.</u>

1. Commands and responses

The message language is subdivided into two types of message, which differ only in the direction of information flow between controlling and controlled virtual machines.

- COMMANDS are messages from a controlling to a controlled virtual machine;
- RESPONSES are messages from a controlled to a controlling virtual machine; responses are mostly transmitted in reaction to a command.

2. State machine and information transfer

The virtual machine controlled by the message language is considered as a STATE MACHINE. The message set can be regarded as being of two types:

- Messages which change the state of the virtual machine (e.g. the VTR messages STOP and PLAY). These commands reside mainly in the type-specific message set and comprise commands which are mutually exclusive (e.g. the tape motion commands (TMCs) in the VTR set).

- Messages (commands and responses) which do not change the state, but which only carry information to or from the virtual machine. An Information-transfer is a general requirement of all types of virtual machine, general principles are applied to these tasks; these messages, therefore reside mainly in the common message set.

3. Information fields (I/F)

Items of information which are maintained by, and held within a controlled virtual machine, and which may be needed by its controlling virtual machine, are arranged in a virtual array of information fields, which is similar in concept to a data-base.

Each information field is identified by a unique descriptor called the information field name. This name, coded as a binary value, is used as an address within all commands referencing the field. The information field name is used, therefore, as a parameter name in these commands.

The format of information field data, within each message, as transmitted over the remote control system, is predefined for each item by the Information field now.

Each message set requires its own array of information fields; the complete field array of a specific virtual machine comprises the field array specified in the common message set, together with that of the type-specific message set.

A typical example of a command requiring an information field is READ, which directs the virtual machine to transmit the content of one or more information field(s), as specified within the command.

The SIMULTANEOUS READ command directs the virtual machine to read, simultaneously, the instantaneous values of a number of specified information fields. In response to this command, all the specified fields will be read as a "snapshot", and will be "locked", therefore, during the READ period.

It is essential to be able to PRESET the values of certain items held within information fields. However, since the preset function could (indirectly) change the state of the virtual machine (e.g. presetting a tape timer), the PRESET command is contained within the type-specific command set; information fields to which it relates are then individually specified.

4. Error and failure messages

An ERROR message advises a controlling virtual machine that the command, as identified, cannot be performed. The reason for the inability to perform the action is contained within an EXEC CODE transmitted as a parameter to the ERROR keyword.

The string which caused the error message is then appended to the EXEC CODE, preceded by a byte count.

In the event of failure of the specific machine (i.e. a failure requiring the attendance of an operator), a single byte FAILURE message is transmitted.

5. Enquiry concept

Although, ideally, every virtual machine should respond to the complete message set, it is the responsibility of each manufacturer to determine the degree of conformance of his product.

To enable a controlling virtual machine to determine the facilities supported by a remote-controlled virtual machine, two enquiry commands are provided:

- FUNCTION POLL to identify supported commands;
- FIELD POLL to identify supported information fields.

The associated responses are FUNCTION POLL RESPONSE and FIELD POLL RESPONSE.

Virtual machines that do not support these enquiry commands must respond to any unknown command with ERROR.

6. Standard and extension keywords

Due to the limited code-space available, each message set (system service, common, type-specific) contains an extension keyword, which opens an additional code space of 256 additional keywords.

Frequently used keywords will preferably reside in the standard set. For keywords that are used less frequently, the additional overhead of one byte is acceptable; such keywords have been put in the extension set from the beginning, thus leaving room in the standard set for future applications.

7. Procedures

A group of commands which are to be executed in sequence on one or more occasions may be combined into a procedure using the command DEFINE PROCEDURE.

Once defined, a procedure can be called simply by the command EXECUTE PROCEDURE, as often as wanted, until cancelled by the DELETE PROCEDURE command.

It is possible to define more than one procedure at a tine using different procedure names, coded as binary numbers.

The command RECALL PROCEDURE and the associated response PROCEDURE RESPONSE may be used to inspect currently-defined procedures.

8. The timeline concept

In order to allow for synchronous processes in and among several virtual machines, a time-scale common to all virtual machines is provided which my be referenced by certain commands. This time-scale is called TIMELINE.

The timeline may be derived externally by a locally-defined reference time (e.g. derived from a central timecode generator and distributed over separate lines), or it may be generated internally by a built-in clock, the "machine internal clock", that gets only its "ticks" from an external source available to all machine internal clocks of the system (e.g. the vertical pulse, in television applications).

Either of the two possibilities may be selected by the TIMELINE SOURCE command.

When the machine internal clock is selected as the timeline source, the timeline may be stopped by the TIMELINE STOP command and restarted by the TIMELINE RUN command, which also specifies the start value.

The TIMELINE RUN command is also issued by the bus controller in response to the system service command REQUEST TIME TRANSMISSION; this allows for exact synchronization of all timelines of the system.

The current status of the timeline may be accessed through the Information field TIMELINE.

9. Events

An event specifies a command that will be executed on the occurrence of a specified trigger condition. The trigger condition arises when a specified trigger value coincides with the content of a specified trigger source. Any information field of the specific virtual machine may serve as a trigger source.

The most important trigger source, however, is the timeline. This allows for time-synchronous events in different virtual machines (e.g. synchronizing the transports of several VTRs).

The command DEFINE EVENT is used to specify an event. The event is cleared by the occurrence of the trigger condition, or by a CLEAR EVENT command.

The command RECALL EVENT and the associated response EVENT RESPONSE may be used to inspect pending events.

Using EXECUTE PROCEDURE as the command within an event specification allows for a sequence of commands to be programmed for execution on a trigger condition.

It is important to note that the controlled virtual machine, once programmed with an event, is responsible for taking care of all necessary actions for the correct execution of that event; even if actions have to be taken in advance of the occurrence of the trigger condition (e.g. in the case of an event that programs an edit entry on the timeline the virtual machine must apply the necessary switch commands for the erase head a certain number of frames in advance of the trigger time).

10. Tasks with repeated responses

In order to reduce overhead on the remote-control system, commands are provided which may be used to instruct a controlled virtual machine to transfer the content of an information field repeatedly; either whenever the content changes (UPDATE command), or when a specified time-period is over (CYCLE command).

Caution must be exercised, however, in the use of multiple UPDATE commands where the values of the specified information fields are changing rapidly; bus congestion may occur.

Additionally, where an information field value has changed a number of times in the period between bus controller polls, only the most recent value is transmitted at the next poll, in response to either the UPDATE or CYCLE commands; this will minimize the risk of bus congestion.

(Note: Repeated transmissions must be consistent with the requirements of the supervisory protocol, i.e. a transmission can take place only following a tributary poll and a subsequent service request to the bus controller.)

11. Dialect identification

The information field VIRTUAL MACHINE TYPE-of the common message set contains a code which defines the type of the type-specific message set. Every dialect has an associated code which is defined in the specification of that manage set.

The type of virtual machine, and the dialect understood by it, can be interrogated by READing this information field.

Chapter 2

Common messages

1. Index of keywords mnemonics and information field names

Hex	Keyword	(Mnemonic)	Hex	Information field name	(Mnemonic)
20	CNOP	(CNOP)	20		
21	CRESET	(CRST)	21	VIRTUAL MACHINE TYPE	(VTYP)
22	READ	(READ)	22	EQUIPMENT TYPE	(ETYP)
23	I/F ITEM RESPONSE	(IFRE)	23	TIME STANDARD	(TIME)
24	TIMELINE SOURCE	(TSCE)	24	TIMELINE TIME	(TTIM)
25		``	25		
26	EXECUTE PROCEDURE	(EXPR)	26	EVENT BUFFER STATUS	(EBST)
27	DEFINE EVENT	(DEEV)	27	VIRTUAL MACHINE STATU	S (VMST)
28	CLEAR EVENT	(CLEV)	28		, , ,
29	ERROR	(CERR)	29		
2A			2A		
2B			2B		
2C			2C		
2D	FAILURE	(FAIL)	2D		
2E		. ,	2E		
2F	TIMELINE STOP	(TSTP)	2F		
30	TIMELINE RUN	(TRUN)	30		
3E	USER DEFINED	(UDEF)	3E	USER DEFINED	(UDND)
3F	EXTENSION	(CEXT)	3F	EXTENSION	(CIEX)

Note: The ability to perform command 29h (ERROR), above, is mandatory for every virtual machine.

EXTENSION SET

Hex	Keyword
-----	---------

(Mnemonic)

	5	(
00		
01		
02		
03	FUNCTION POLL	(FNPL)
04	FUNCTION RESPONSE	(FNRE)
05	FIELD POLL	(FDPL)
06	FIELD RESPONSE	(FDRE)
07	UPDATE	(UDAT)
08	CYCLE	(CYCL)
09	MUTE	(MUTE)
OA	SIMULTANEOUS READ	(SIRD)
OB	DEFINE PROCEDURE	(DEPR)
OC	DELETE PROCEDURE	(DLPR)
OD	RECALL PROCEDURE	(REPR)
OE	PROCEDURE RESPONSE	(PRRE)
OF	RECALL EVENT	(REEV)
10	EVENT RESPONSE	(EVRE)
11	SIMULTANEOUS READ RESPONSE	(SRDR)
FF	EXTENSION	(EXEX)

2. Keywords

In the following definitions, parameter names and parameter values are 8-bit binary, unless otherwise noted.

Multi-byte values, where Used, are ordered with the most-significant byte first in the message; the least-significant bit ia transmitted first.

- Hex Keywords
- 20 CNOP

Virtual machine no operation

Format: <CIROP>

21 CRESET

Directs the destination virtual machine to assume standard values of all preselectable functions. (Same status as power-up)

Format: <CRESET>

22 READ

Directs the virtual machine to transmit the instantaneous content of the specified information field

Format: <READ> <I/F NAME>

Note. Several I/F NAMS may be wrapped in a BEGIN/END construct.

EBU	- System service	and common messages	tech 3245
23	I/F ITEM RE	ESPONSE	
	Response to	READ, UPDATE or CYCLE comm	hands
	Format	<117 ITEM RESPONSE>	
	Format	<i f="" name=""></i>	
			h varies according to the I/F NAME)
	Note: Severc		may be wrapped in a BEGIN/END construct.
24	TIMELINE	SOURCE	
	Directs the vi	irtual machine to select the source of	f the timeline
	Format:	<timeline source=""></timeline>	
		<source ident=""/> <00> IN	FERNAL - Internal clock Incremented by an unspecified source ("tick")
		<01> EX	FERNAL - External reference time
26	EXECUTE I	PROCED	
	Directs the v	irtual machine toexecute immediatel	y the procedure named.
	Format:	<execute procedure=""></execute>	
	Format.	<pre><procedure name=""></procedure></pre>	NAME is in the range 01h to FFh,
			0h is reserved
27	DEFINE EV		
	-		e executed at the Instant of coincidence of a
	specified trig	ger time with the content of a specif	led I/F time
	Format:	<define event=""></define>	
		<event name=""></event>	8 bits
		<i f="" name="" of="" sc<="" td="" trigger=""><td>OURCE></td></i>	OURCE>
		<trigger value=""></trigger>	(type TIME)
		<command/>	specifies the function
	Notes: 1. To	<i>implement a procedure in an ever</i>	nt, "EXECUTE PROCEDURE" shall be used for
		e COMMAND, and the procedure	
		e TRIGGER SOURCE I/F NAME i.	s a TIMELINE or a type-specific time information
	•		edure defined as an event must be executed by
		e virtual machine at the trigger time	•

- 4. Events are limited to type-specific messages, and the common message READ.
- 5. The virtual machine shall clear an event on execution.
- 6. The EVENT NAME is unique for each event.
- 7. Where mutually exclusive commands are given inadvertently at the same time through the use of events constructs, such events shall be cleared by the virtual machine and an error message returned.

28 CLEAR EVENT

Clears one or all events previously established

Format: <<CLEAR EVENT> <EVENT NAME> (<00h> is all events)

29 ERROR

Advises the controlling virtual machine th&t7the previous string has not been understood by, or cannot be performed by the controlled virtual machine

Format:	<mc code=""> 8</mc>	bits:
	00 01 02 03 04 05 FF	Buffer overflow Invalid keyword Invalid keyword argument
	<byte count=""> <offending string<="" td=""><td> 8 bits, not including the byte count > truncated not to exceed an overall message length of 256 bytes </td></offending></byte>	 8 bits, not including the byte count > truncated not to exceed an overall message length of 256 bytes

2D FAILURE

Warns of a catastrophic failure of the specific machine; i.e. a failure which requires intervention by the local operator

Format: <FAILURE>

2F TIMELINE STOP

If the timeline is internal, stops the timeline from increment

Format: <TIMELINE STOP>

30 TIMELINE RUN If the timeline is internal, starts the timeline incrementing from the time indicated

Format:	<timeline rm<="" th=""><th></th></timeline>	
	<timeline value=""></timeline>	(type TIME)

3E USER, DEFINED Identifies USER DEFINED commands

Format:	<user defined=""></user>	
	<byte count=""></byte>	16-bit~binary unsigned number. Specifies the length
		of the command, in bytes, not including the byte
		count itself.
	<raw data=""></raw>	(length varies according to the byte count)

3F EXTENSION

Directs the virtual machine to enter the common message extens on act following single command only. The virtual machine shall then resume execution of the basic command set.

Format: <EXTENSION> <EXTENSION SET COMMAND> (one or more bytes)

00]		
01	}	RESERVED	

02 J

03 FUNCTION POLL

Directs the virtual machine to indicate which of the keywords contained in the command set are supported by its type-specific machine. BEGIN and END are excluded from the keywords. The existence of the function poll command assumes the existence of the BEGIN/END construct.

EXTENSION SET

Format: <FUNCTION POLL>
<BEGIN>
<KEYWORD l>
<KEYWORD 2>
<KEYWORD ...>
<END>

04 FUNCTION RESPONSE Contains the list of supported keywords in response to a FUNC

Format: <FUNCTION REPONSE>
<BEGM
<KEYWORD l>
<KEYWORD 2>
<KEYWORD ...>
<END>

05 FIELD POLL

Directs the virtual m~chine to indicate which I/F names contained in the parameter list are supported by the type-specific machine information field

Format:	<field poll=""></field>
	<begin></begin>
	<i f="" i="" name=""></i>
	<i 2="" f="" name=""></i>
	<i f="" name=""></i>
	<end></end>

06 FIELD RESPONSE

Contains the list of supported I/F names from those indicated by a FIELD POLL command

Format: <FIELD RESPONSE>
<BEGIN>
<I/F NAME l>
<I/F NAME 2>
<I/F NAME ...>
<END>

07 UPDATE

Directs the virtual machine to respond immediately with the contents of the information field, and then, automatically, whenever its contents change.

Format:	<updaate></updaate>	
	<i f="" name=""></i>	(Hex,)

- *Notes: 1* The single I/F NAME may be replaced by several names wrapped in a BEGIN/END construct.
 - 2. The default condition is MUTEd.
 - 3. Where an information field value has changed a number of times in the period between bus-controller polls, only the most recent value is transmitted at the next poll.

08 CYCLE

Directs the virtual machine to transmit periodically, as specified, the instantaneous contents of the specified information field.

Format:	<cycle></cycle>	
	<time interval=""></time>	(type TIME)
	<i f="" name=""></i>	(Hex)

- *Notes: 1. The single I/F NAME may be replaced by several names wrapped In a BEGIN/END construct.*
 - 2. The default condition is MUTEd.
 - 3. Where an information field value has changed a number of times in the period between bus-controller polls, only the most recent value Is transmitted at the next poll.

09 MUTE

Directs the virtual machine to switch off all responses previously initiated by CYCLE or UPDATE commands

Format: </ d>
</ a>

0A SIMULTANEOUS READ

Directs the virtual machine to read simultaneously the contents of the specified information fields

Format: <SIMULTANEOUS READ> <BEGIN> <I/F NAME> <I/F NAME> <END>

0B DEFINE PROCEDURE

Directs the virtual machine to assemble a block of virtual machine commands for subsequent execution

<define procedure=""></define>	
<procedure name=""></procedure>	(Hex) in the range 0lh-FFh. 00h is reserved.
<byte count=""></byte>	16 bits; not including the byte count
<command l=""/>]
<command 2=""/>	The procedure
<command/>	J
	<procedure name=""> <byte count=""> <command i=""/> <command 2=""/></byte></procedure>

- Notes: 1. All functions contained within a procedure which is used within an event must be executed by the virtual machine at the trigger time specified by the event, even if actions must be taken in advance. 2. Procedures are retained until receipt of a DELETE PROCEDURE or CRESET command. 0CDELETE PROCEDURE Directs the virtual machine to delete a command block previously defined Format: <DELETE PROCEDURE> <PROCEDURE NAME> (<00h> deletes all procedures) 0D **RECALL PROCEDURE** Directs the virtual machine to transmit, but not execute or delete, the specified procedure for checking Format: <RECALL PROCEDURE> <PROCEDURE NAME> (<00h> recalls all procedures) 0E PRECEDURE RESPONSE Response to RECALL PROCEDURE command Format: <PROCEDURE RESPONSE> <PROCEDURE NAMW <BYTE COUNT> 16 bits not including the byte count <C011MAND I> <COMMAND 2> <COMMAND . . .> 0F **RECALL EVENT** Causes an EVENT RESPONSE from the controlled virtual machine containing the data of an event already established Format: <RECALL EVENT> <EVENT NAME> (<00h> recalls all events) 10 **EVENT RESPONSE** Contains the data of an event already established Format: <EVENT RESPONSE> <EVENT NAME> <I/F NAME of TRIGGER SOURCE> <TRIGGER VALUE> (type TIME) function caused by trigger condition <COMMAND> 11
 - SIMULTANEOUS READ RESPONSE 5,2 Response to SIMULTANEOUS READ with all specified information fields
 - Format: <SIMULTANEOUS READ RESPONSE>, <BEGIN> <I/F NAME I> <I/F VALUE I> <I/F NAME 2> <I/F VALUE 2>

 $\leq END >$

FF EXTENSION

Directs the virtual machine to enter the further extension sat for the following single command only. The virtual machine shall then resume execution of the basic set.

Format: <EXTENSION> <EXTENSION SET COM~

3. Information fields

20 Not used

21 VIRTUAL MACHINE TYPE Contains the virtual machine name and hence defines the type specific machine command set

Format: <VIRTUAL MACHINE TYPE> <VIRTUAL MACHINE NAME> (8-bit binary unsigned number)

The content of VIRTUAL MACHINE NAME shall be defined explicitly in each virtual machine dialect; the virtual machine name for a wholly USER DEFINED virtual 01h.

22 EQUIPMENT TYPE

Contains the data to identify the specific product, including hardware/software revision level

Format: <EQUIPMENT TYPE>
<BYTE COUNT> 8 bits, not including the byte count itself
<ISO 646 printing characters>

Note: The ISO characters shall contain three fields, namely:

- 1. Manufacturer Identification
- 2. Product identification
- 3. Revision level

in that order. Each field shall be terminated by <0Dh>.

23 TIME STANDARD

Contains the nominal field rate to be used, or in use

Format:	<time standard=""></time>	
	<name></name>	8-bit binary unsigned number
		<00h> is undefined
		<01h> is "48
		<02h> is "50"
		<03h> is "60"
TIMELINE TIM	1E	
Contains the timeline time value		
Format:	<timeline time=""></timeline>	
	<timeline time="" value=""></timeline>	the resolution shall be consistent with the timecode

in use.

24

26	EVENT BUFFER STATUS Tallies the event buffer status				
	Format:	<event buffer="" status=""> <status report=""></status></event>	Space remaining In bytes 16-bit number		
27	VIRTUAL MAC Tallies the virtual	CHINE STATUS machine status			
	Format:	<virtual machine="" stat<br=""><status report=""></status></virtual>	TUS> <00h> off <01h> not available <02h> available		
3E	USER DEFINED Identifies USER DEFINED information fields				
	Format:	<user defined=""></user>			
		<byte count=""></byte>	16-bit binary unsigned number. Specifies the length of the information field in bytes, not including the byte count itself		
		<raw data=""></raw>	(Length varies according to the byte count)		
3F			message I/F name extension set for the following hen resume access to the basic I/F name set		

Format: <EXTENSION>

Reproduction, even in part, of this publication is forbidden except with the prior, written authority of the Publisher

REMOTE-CONTROL SYSTEMS FOR BROADCASTING PRODUCTION EQUIPMENT VIDEO TAPE-RECORDER TYPE-SPECIFIC MESSAGES

Tech. 3245-E - Supplement 2

November 1986

CONTENTS

Introduction	3
Chapter 1 - General concepts	5
1. Transport machine states	5
2. Electrical machine states	5
3. Transport speeds	6
4. Record control	6
5. Track and channel selection	6
 6. VTR information fields 6.1. TMC tallies 6.2. Other command tallies 6.3. Tape code 	7 7
 7. Synchronization 7.1. The SYNC command in the case of an "Ideal machine" 7.2. The CHASE command: an alternative means of maintining synchronism 	8
8. Immediate and timeline modes	9
9. Sample command sequences.9.1. Immediate mode9.2. Timeline mode	
Chapter 2 - VTR type-specific messages (virtual machine type is 02h)	15
1. Index of keywords, mnemonics and information field names	15
2. Keywords	16
3. Information fields	25

Introduction

Document Tech. 3245 describes the specification of a digital remote-control system for broadcasting production equipment. It defines completely the electrical/mechanical level (level 1), and the supervisory level (level 2), of the interface. The two remaining levels - the system service level (level 3), and the virtual machine level (level 4) - are defined only in terms of function and control message syntax.

Supplement 1 to Tech. 3245 completes the definition of the system service level by detailing the system service messages and, in addition, defines the virtual machine messages which are common to all types of virtual machine - the common messages.

The present Supplement defines the type-specific virtual machine messages which are applicable to video tape recorders. Type-specific messages applicable to other categories of equipment are defined in other supplements to Tech. 3245.

In order to implement a complete network, the system designer therefore requires:

Document Tech. 3245	- the general specification
Supplement 1	- system service and common messages

and one or more other supplements appropriate to the category or categories of equipment to be used.

The specification described in this Supplement has been developed jointly with the SMPTE, and is functionally identical to that to be published as an SMPTE Recommended Practice.

Chapter 1 General concepts

This chapter contains a general explanation of some of the concepts used in the formulation of the VTR type-specific message set. It constitutes tutorial information, and is intended to assist in the understanding of the specification in Chapter 2.

1. Transport machine states

The transport mechanism of a VTR is considered as an independent state machine. Therefore the commands which control transport functions form a subset within the VTR-specific message set. These commands are called Tape Motion Commands ("TMC"). Each TMC causes a transition from one specific transport state to another and cancels the previous state, i.e. these functions are mutually exclusive.

TMCs include: STOP, STD PLAY, SHUTTLE, PREROLL SEARCH, SYNC, etc.

All tape motion commands are marked as such in the command description.

2. Electrical machine states

Other VTR commands affect states of the electrical environment of the VTR. The functions controlled by them are not necessarily mutually exclusive.

3. Transport speeds

Some commands require a speed specification which is carried by the command in the form of a three-byte parameter. This parameter is intended to define the direction and absolute value of the desired speed that should be achieved as closely as possible by the real machine.

All commands with a speed parameter use the same format and coding. This in a three-byte signed number with a scale range defined so that

000000hex	represents still
010000hex	represents standard play-speed forward.
7F0000hex	represents approximately 127 times standard play-speed forward
FF0000hex	represents standard play-speed reverse
800000hex.	represents 128 times standard play-speed reverse.

It allows, theoretically, for speeds between -128 and approximately +127 times standard speed and a resolution of 1/65,536th of standard speed.

4. Record control

The recording function of the tape machine is fully controlled by the command pair ENTRY/EXIT. The form of record entry or exit is predefined by the command RECORD MODE. The tracks/channels affected by the command are defined by a parameter contained within the ENTRY/EXIT command.

5. Track and channel selection

Some commands and information fields refer to one or more tracks (or the associated channels) of the tape machine. The format used is the same in all cases and is defined in the description of the ENTRY and EXIT commands. The format allows for up to 16 audio tracks for future applications.

6. VTR information fields

The VTR dialect makes extensive use of the information field concept; some specific items of the VTR information field are described in the following sections.

6.1. TMC tallies

This Information field indicates the current state of the transport. As all possible states are commanded by TMCs, the code of the corresponding TMC keyword in used to identify them individually.

An additional byte indicates (tallies) the level of success, i.e. whether the commanded function is still in progress or already finished, and whether successfully or not.

6.2. Other command tallies

Commands which cause changes in any electrical machine state (non-TMCs) have a corresponding information field. When the information field is read, the response is tallied in the same format as that of the command.

Example: The command RECORD MODE SELECT is intended to preset the state of the recording electronics. The information field RECORD MODE TALLY may be read to obtain information about the record mode status, which will be tallied in the same format as that contained within the RECORD MODE SELECT command itself.

6.3. Tape code

There are several scales that may be used to identify a tape position, for example:

- longitudinal timecode,
- vertical interval timecode,
- tape timer 1,
- tape timer 2.

For tape search, editing and other automatic procedures one of these scales must be used. The selected scale is referred to as the TAPE CODE, and can be chosen by the TAPE CODE SELECT command. The functions mentioned above then refer to the TAPE CODE rather than directly to timecode.

There is a separate information field for each of the codes and timers mentioned above; the tape code actually selected, however, can also be read from the information field TAPE CODE.

7. Synchronization

Synchronization is one of the fundamental requirements of a tape machine. Synchronization means that the machine is programmed to pass:

- a specified point on the tape (*'where"),
- at a specified point in time ("when'), and
- locked to a specified speed ("how").

- "Where": The point on the tape is called SYNC POINT. It is specified in terms of TAPE CODE, and is maintained in the information field SYNC POINT. The sync point is specified by applying a PRESET command to this information field.
- "When": The point in time is defined by the instant of issue of the SYNC command. At a specified time period after the arrival of the SYNC command, the SYNC POINT must be reached. This time period is called PREROLL DURATION; it is maintained in the information field PREROLL DURATION, and is specified by applying a PRESET command to this information field.

Note that the PREROLL DURATION is reserved mainly for synchronization purposes; a greater PREROLL DURATION than required by the real machine may, however, be chosen for operational reasons (e.g., extended preview time).

"HOW" The speed at the SYNC POINT is defined by a value maintained in the information field SYNC VELOCITY; it is specified by applying a PRESET command to this information field.

As a prerequisite for the use of the SYNC command, the tape must be placed at a park position which is calculated from the SYNC POINT and the SYNC VELOCITY as follows:

SYNC POINT - <u>PREROLL DURATION X SYNC VELOCITY</u> STANDARD VELOCITY

To achieve this park position the PREROLL SEARCH command is used and the VTR virtual machine must make the calculation automatically.

7.1. The SYNC command in the case of an "Ideal machine"

A better understanding of the function of the SYNC command can be had if it is considered in the case of an "ideal" machine.

- On the arrival of a SYNC command an ideal VTR would start immediately with no delay, fully locked and with the specified speed. Under these ideal conditions the machine would, at the PREROLL DURATION time later, be precisely at the SYNC POINT.
- A real VTR cannot start and synchronize immediately; it is therefore the responsibility of the virtual machine, and hence of the virtual machine manufacturer, to control the real machine in such a manner that the result is the same.

Measures taken in order to correct synchronization following the PREROLL DURATION period may include:

- on the receipt of a PREROLL SEARCH command, parking a few frames down the tape to match the average number of frames lost while coming up to play speed, and
- on the SYNC command, overriding the specified velocity using the tape speed override facility of the real machine to eliminate the remaining offset from the appropriate lock condition.

7.2. The CHASE command: an alternative means of maintining synchronism

While the PREROLL SEARCH/SYNC commands may be used to run several machines in continuous synchronism (without changing their states and/or speed), the CHASE command is used to maintain synchronism as closely as possible where dynamic changes of the machines' state and/or speed occur.

This operation, however, requires one of the synchronous machines to be the master, while the others perform as slaves, and emulate all the movements of the master, even when in the SHUTTLE state.

The slaves must therefore be given precise information about the movement of the master. Such information is, in general, transferred by means of timecode, which is distributed continuously from the master to all slaves over a separate line. The bus cannot be used for this purpose due to its unpredictable delays.

The CHASE command specifies an offset between the timecode of the chasing machine and a reference. The reference is the timeline, which, in this case, will usually be programmed to use an "external reference time" as its source (i.e. the timecode of the master). See also the common message TIMELINE SOURCE.

8. Immediate and timeline modes

All VTR commands can be used in the "immediate mode", which causes their instantaneous execution; in this way they can be used to control even time-critical functions. As the transfer of a message over the bus within a given time slot cannot be guaranteed, however, the immediate mode is not recommended for such applications.

Wherever possible, time-critical commands should be queued on the timeline, using the command facilities provided by the common message set. Activities requiring synchronous operations between several VTRs are best suited to the "timeline mode" of operation, which allows for the preprogramming of sequences of time-critical functions (e.g. SYNC, ENTRY and EXIT commands). In general, time-critical functions refer to the timelines of the individual virtual machines, which themselves are synchronized by a system time transmission from the bus controller in response to a REQUEST TIME TRANSMISSION command.

For certain time-critical applications (for example, editing), it is essential that all machine internal clocks are synchronized to the station field phase sequence. In order to achieve this phasing, the machine internal clock will be advanced by as many frames as necessary following receipt of the TIMELINE RUN command. When all virtual machines in a session achieve this in the same way (for example, when they are all VTRs), there is no difficulty.

A problem does arise, however, if there are non-VTR participants within a session (ATRs, for example). They would have no reason to advance the machine internal clock is accordance with a video sequence and a mixed operation of VTRs and non-VTRs would therefore not necessarily run synchronously.

There are two approaches which might be taken to resolve this problem.

tech 3245

If the bus clock which resides in the bus controller runs synchronously with the video phase sequence, no correction of a machine internal clock following a TIMELINE RUN command need take place.

Alternatively, if this approach is not possible, the controlling device may gain information about any correction of the clocks within the system by READing the information field TIMELINE CORRECTION TALLY from all virtual machines involved and comparing them with each other. If this results in differing tallies, the controlling device can take that into account when calculating events for the timeline.

In the case of a known synchronous bus clock the TIMELINE CORRECTION TALLY may be used by the controlling device for fault diagnosis on the machine internal clocks.

9. Sample command sequences

The following sections show samples of typical command sequences in immediate mode as well as in timeline mode. These sequences describe only some of the applications of the command set; there is no obligation on the part of system designers to use precisely these sequences.

9.1. Immediate mode

9.1.1. Search and play

some time before initial action:

<PRESET> <PREROLL DURATION> <time value>

<PRESET> <SYNC POINT> <time value> initial action:

<PREROLL SEARCH>

final action (not earlier than when TMC TALLY has been "SEARCHed, successfully"):

<STD PLAY>

On the STD PLAY command the VTR starts. It reaches the SYNC POINT after approximately the PREROLL DURATION.

If the VTR is required to start at the SYNC POINT location (using no preroll) the TARGET SEARCH command should be used. Synchronization is not then guaranteed.

Note that the PREROLL DURATION and the SYNC POINT once loaded, need not be reloaded until changed.

9.1.2 Search and synchronize

some time before initial action:

<PRESET> <PREROLL DURATION> <time value>

<PRESET> <SYNC POINT> <time value>

<PRESET><SYNC VELOCITY><speed value>

initial action:

<PREROLL SEARCH>

final action (not earlier than when TMC TALLY has been "SEARCHed, successfully"):

<SYNC>

On the SYNC command the VTR starts. It reaches the SYNC POINT after precisely the PREROLL DURATION.

Under control of the virtual machine, the TSO function of the VTR may be used to find the appropriate lock.

Synchronization of the VTR in response to the SYNC command is guaranteed; however:

- in PAL the VTR will be advanced by one frame, when necessary to be in accordance with the P-phase, and

- the colour framer will advance the VTR by as many frame a as necessary.

This sequence can be used for the synchronous operation of multiple VTRs only when delivery of the SYNC command can be guaranteed within a reasonable time slot (e.g. one field).

Note that the PREROLL DURATION, once loaded, need not be reloaded until changed.

9.1.3. Search, synchronize and insert edit

some time before initial action:

<PRESET> <PREROLL DURATION> <time value>

<PRESET <SYNC POINT> <time value>

<PRESET><SYNC VELOCITY><speed value>

<RECORD MDE> <"insert">

initial action:

<PREROLL SEARCH>

final action (not earlier than when the TMC TALLY has been "SEARCHed successfully"):

<SYNC> at ("entry point" - "record delay"):

<ENTRY> <appropriate channels>

at ("exit point" - "record delay"):

<EXIT> <appropriate channels>

The controlling virtual machine must "know" the record delays of the VTR9 and correct for them.

In "assemble", edits and previews differ only in the RECORD MODE parameter.

This sequence can be used for the synchronous operation of multiple VTRs only on the condition that the transfer of the SYNC, ENTRY, and EXIT commands is guaranteed within a reasonable time slot (e.g. one field).

9.2. Timeline mode

9.2.1. Search and play

some time before initial action:

<PRESET> <PREROLL DURATION> <time value>

<CLEAR EVENT> <0>

<STOP TIMELINE> (optional)

<PRESET> <SYNC POINT> <time value>

<PRESET><SYNC VELOCITY><speed value>

initial action:

<PREROLL SEARCH>

final action (not earlier than when TMC TALLY has been "SEARCHed, successfully"):

<REQUEST TIME TRANSMISSION>

<DEFINE EVENT>

<TIMELINE> <"timeline sync point" - "preroll duration">

<STD PLAY>

EBU - Video tape-recorder type-specific messages

Note that the "timeline sync point" in the value of the timeline when the SYNC POINT has been reached approximately; it must be calculated from the instantaneous timeline value transmitted by the bus controller in response to the preceding REQUEST TIME TRANSMISSION command.

In this case it is actually easier to use the immediate mode which allows for VTR PLAY at a specific time from commands given much earlier.

9.2.2. Search and synchronize

some time before initial action:

<PRESET> <PREROLL DURATION> <time value>

<CLEAR EVENT> <0>

<STOP TIMELINW

(optional)

<PRESET> <SYNC POINT> <time value>

<PRESET><SYNC VELOCITY><speed value>

initial action:

<PREROLL SEARCH>

final action (not earlier than when TMC TALLY has been "SEARCHed successfully"):

<REQUEST TIME TRANSMISSION>

<DEFINE EVENT>

<TIMELINE> <"timeline sync point" - "preroll duration">

<SYNC>

Note that the "timeline sync point" is the value of the timeline when the SYNC POINT has been reached precisely; it must be calculated from the instantaneous timeline value transmitted by the bus controller in response to the preceding REQUEST TIME TRANSMISSION command. For editing it is generally desirable to introduce no unnecessary waiting times; therefore it is suggested that ("timeline sync point" - "preroll duration") be substituted in the DEFINE EVENT command by (instantaneous timeline value + some frames to compensate for transmission delay).

It is the responsibility of the controlling virtual machine to ensure that the SYNC command is placed on the timeline at a point such that the SYNC POINT and the timeline SYNC POINT coincide in respect of the colour framer and/or the P-phase (in PAL).

If this is not done, the situation described in 9.1.2 will occur, which may result in inexact edits.

This implies preference for a system in which the system time, which presets all timelines, is synchronized to reference colour frame (or in PAL, at least to P-phase).

9.2.3. Search, synchronize, and Insert edit

some time before initial action

<PRESET> <PREROLL DURATION> <time value>

<CLEAR EVENT> <0>

<STOP TIMELINE>

(optional)

<PRESET> <SYNC POINT> <time value>

<PRESET><SYNC VELOCITY><speed value>

<RECORD MODE> <"insert">

initial action

<PREROLL SEARCH>

final action (not earlier than when TNC TALLY has been "SEARCHed, successfully"):

<REQUEST TIME TRANSMISSION>

<DEFINE EVENT>

<TIMELINE> <"timeline sync point" - "preroll duration">

<SYNC>

<DEFINE EVENT>

<TIMELINE> <required timeline value>

<ENTRY> <appropriate channels>

<DEFINE EVENT>

<TIMELINE> <required timeline value>

<EXIT> <appropriate channels>

The VTR virtual machine is responsible for the compensation of any inherent delays, so that the specified functions happen on the designated field. This allows the controlling virtual machine to talk to the VTR in a generic fashion. Thus type C, type B, U-matic, and Quad VTRs will all be set by exactly the same commands, and will all edit on the same field.

Split edits require multiple ENTRY and/or EXIT commands stacked on different points of the timeline by using multiple DEFINE EVENT c ends.

In "assemble", edits and previews differ only in the RECORD MODE parameter.

Chapter 2 VTR type-specific messages (virtual machine type is 02h)

1. Index of keywords, mnemonics and information field names

Hex	Message keyword (mnem	nonic)	Hex	Information field name (mnemonic)
40	not used		40	not used	
41	STOP	STOP	41	LTC FROM TAPE	LTFT
42	VARIABLE PLAY	VAPL	42	VITC FROM TAPE	VIFT
43	STD PLAY	STPL	43	SELECTED TAPE CODE	SETC
44	STEP	STEP	44	USERBITS FROM TAPE LTC	UFTL
45	VISIBLE FAST	VFST	45	USERBITS FROM TAPE VITC	UFTV
46	SHUTTLE	SHUT	46	T T 1 (tape timer 1)	TTON
47	TAPE SPEED OVERRIDE	TSPO	47	T T 2 (tape timer 2)	TTW
48	READY SELECT	REDS	48	READY TALLY	REDT
49	SERVO REFERENCE SELECT	SRES	49	SERVO REFERENCE TALLY	SRET
4A	RECORD MODE SELECT	REMS	4A	RECORD MODE TALLY	RENT
4B	ENTRY	ENTY	4B	CHANNEL RECORD STATUS	CRES
4C	EXIT	EXIT	4C	CHANNEL RECORD MASK	CREM
4D	TAPE CODE SELECT	TACS	4D	TAPE CODE SELECTION TALLY	TACT
4E	TARGET SEARCH	TASE	4E	SYNC VELOCITY	SVTY
4F	PREROLL SEARCH	PRSE	4F	PREROLL DURATION	PRDU
50	SYNC	SYNC	50	SYNC POINT	SPNT
51	COLOUR FRAMER SELECT	CFRS	51	COLOUR FRAMER TALLY	CFRT
52	EDIT FIELD SELECT	EDFS	52	EDIT FIELD TALLY	EDFT
53	CHASE	CHAS	53	not used	
54	TCG LTC TIME SOURCE SEL	TLTS	54	TCG LTC TIME SOURCE TALLY	TLTT
55	TCG VITC TIME SOURCE SEL	TWS	55	TCG VITC TIME SOURCE TALLY	TWT
56	TCG LTC UB SOURCE SEL	TLUS	56	TCG LTC UB SOURCE TALLY	TLUT
57	TCG VITC UB SOURCE SEL	TWS	57	TCG VITC UB SOURCE TALLY	TVUT
58	EJECT/UNTEREAD	EJCT	58	not used	
59	not used		59	not used	
SA	not used		5A	TAPELENGTH	TLTH
5B	not used		5B	PARKING ACCURACY	PARK
5C	not used		5C	SYNCHRONISM ACCURACY	SYAC
5D	not used		5D	not used	
SE	TRACKING SELECT	TRKS	SE	TRACKING SELECTION TALLY	TRKT
SF	ANTI-CLOG CONTROL	ANCC	SF	ANTI-CLOG CONTROL TALLY	ANCT
60	PRESET	PRST	60	not used	
61	not used		61	TMC TALLY	TMCT
62	not used		62	VELOCITY TALLY	VELT
63	not used		63	TIMELINE CORRECTION TALLY	TLCT
64	not used		64	not used	
65	PLAYBACK CHANNEL SELECT	PLCS	65	PLAYBACK CHANNEL TALLY	PLCT
66	CHANNEL MUTE SELECT	CMUS	66	CHANNEL MUTE TALLY	CMUT
67	TAPE/EE SELECT	TEES	67	TAPE/EE TALLY	TEET
68	not used		68	TIMECODE TO TAPE LTC	TTTL
69	not used		69	TIMECODE TO TAPE VITC	TTTV
бA	not used		бA	USERBITS TO TAPE LTC	\mathbf{UTTL}
6B	not used		6B	USERBITS TO TAPE VITC	UTTV
6C	not used		6C	PRESETTABLE TIME SRC LTC	PTSL
6D	not used		6D	PRESETTABLE TIME SRC VITC	PTSV
бE	not used		бE	PRESETTABLE UB SOURCE LTC	PUSL
бF	not used		бF	PRESETTABLE UB SOURCE VITC	PUSV

2. Keywords

General notes: 1. All tape motion commands (Indicated below as "TMC") are mutually exclusive.

- 2. in all cases, the temporal order of entries and exits must be preserved. Thus an entry received later in time at the same position on timeline will cancel an existing exit.
- 40 not used
- 41 STOP (TMC command) causes the controlled VTR to stop as soon as possible; indeterminate picture.

Format: <STOP>

42 VARIABLE PLAY (TMC command)

causes the controlled VITR to enter continuously variable playback mode with specified direction and speed.

Format:	<variable play=""></variable>		
	<speed></speed>	3-byte signed binary number: 2's complement	
	scale:	000000hex - still 010000hex - standard play-speed forward. 7F0000hex = approximately 127 times standard play-speed forward FF0000hex - standard play-speed reverse 800000hex - 128 times standard play-speed reverse.	

43 STD PLAY (TMC command) causes the controlled VTR to enter field-locked real time playback mode, colour framed as selected, with specified direction and speed.

Format: <STD PLAY>

44 STEP (TMC command)

causes the controlled VTR to move the tape a specified number of fields forward or backward, with respect to its current position, only while in TMCs: STEP, TSO, VISIBLE FAST (STILL) or VARIABLE PLAY (STILL).

Successive commands are cumulative until next TMC other than STEP.

Format: <STEP> <FIELD NUMBER> 1-byte signed number; range: -128 ... +127 EBU - Video tape-recorder type-specific messages

- 45 VISIBLE FAST (TMC commend) causes the controlled VTR to enter fact tape motion with visible but not, necessarily broadcastable picture with specified direction and speed. Format: <VISIBLE PAST> <SPEED> 3-byte signed binary number; same format an in VARIABLE PLAY 46 SHUTTLE (TMC command) causes the controlled VTR to travel at specified direction and speed without necessarily reproducing picture or sound. Format: <SHUTTLE> <SPEED> 3-byte signed binary number; same format as in VARIABLE PLAY 47 TAPE SPEED OVERRIDE (TMC command) causes the controlled VTR to override instantaneous play speed for synchronizing purposes. Format: <TAPE SPEED OVERRIDE> 3-byte signed binary number; same format as in VARIABLE <SPEED> PLAY 48 **READY SELECT** establishes the VTR in a state to minimize start-up time. Format: <READY SELECT> <SWITCH> boolean value: 00h = OFF (= default)01h = ON49 SERVO REFERENCE SELECT selects the input switch for video reference source. <SERVO REFERENCE SELECT> Format: <MODE> 1-byte special binary code: 00h = auto select (= default)01h = video in02h = external ref inputFFh = - as selected locally 4A. RECORD MODE SELECT selects the mode of the subsequent recording(s) or edit(s). Format: <RECORD MODE SELECT> <MODE> 1-byte special binary code: 00h = record disable (= default)01h = insert02h = assemble; all channels
 - 03h = assemble; channel selectable
 - 04h = rehearsal
 - 05h = crash record

4B ENTRY

cause a start of insertion on the specified channel(s) [track(s)]

- Format: <ENTRY> <CHANNELS> 3-byte bit mask:
 - bit 0 (lsb) = video bit 1 = sync track bit 2 = VITC bit 3 = reserved bit 4 = reserved bit 5 = reserved bit 6 = reserved bit 7 = LTC bits 8 - 23 - audios 1 16 respectively Logic: 0 = channel not affected

1 = channel turned on or stays on

Notes: 1. In "assemble; all channels" mode the channel bits have no meaning. 2. Bits 0-7 form the least-significant byte; this byte is transmitted last.

4C EXIT

causes a termination of an insertion on the specified channels(a) track(a)

- Format: <EXIT> <CHANNELS> 3-byte bit mask:
 - bit 0 (lsb) = video
 bit 1 = sync track
 bit 2 = VITC
 bit 3 = reserved
 bit 4 = reserved
 bit 5 = reserved
 bit 6 = reserved
 bit 7 = LTC
 bits 8 23 = audios 1 16 respectively
 Logic: 0 = channel not affected
 1 = channel turned off or stays off

Notes: 1. In "assemble; all channels" mode the channel bits have no meaning. 2. Bits 0-7 form the least-significant byte; this byte is transmitted last.

4D TAPE CODE SELECT

selects the type of code for all succeeding messages that refer to "TAPE CODE".

Note: As LTC, VITC, T T 1 and T T 2 are also contained in an item of the VTR-specific INFORMATION FIELD, they may be accessed by READ command at any time, even if not selected as TAPE CODE by the command TAPE CODE SELECT. Format: <TAPE CODE SELECT> <CODE TYPE> 1-byte special binary code:

> 00h = longitudinal timecode (= default) 01h = vertical interval timecode 02h = T T 1 03h = T T 2 04h = auto TCFFh = as selected locally

4E TARGET SEARCH (TMC command)

causes the controlled VTR to move to a defined tape position in accordance with the TAPE CODE.

```
Format: <TARGET SEARCH>
<TAPE CODE> (type TIME; field referenced)
```

Note: The type of TAPE CODE is selected by the command TAPE CODE SELECT.

4F PREROLL SEARCH (TMC command) causes the controlled VTR to move to a tape position determined from the duration of the PREROLL TIME in advance of the SYNC POINT and the SYNC VELOCITY, in accordance with the TAPE CODE.

Note. PREROLL TIME, SYNC POINT and SYNC VELOCITY are part of the VTR-specific INFORMATION FIELD.

Format: <PREROLL SEARCH>

50 SYNC (TMC command) causes the controlled VTR to start, and synchronize after the PREROLL DURATION when the tape will be at the SYNC POINT and travelling at the SYNC VELOCITY.

- *Notes: 1. SYNC POINT and SYNC VELOCITY are part-of the VTR-specific INFORMATION FIELD, and must be predefined by a PRESET command before execution.*
 - 2. The tape must be positioned and tallied previously by a PREROLL SEARCH command.
 - 3. If the SYNC VELOCITY is standard play speed, the VTR reverts to STD PLAY after attaining sync.
 - 4. In PAL the VTR will be ADVANCED by one frame when necessary, to be in accordance with the P-phase, and the colour framer will ADVANCE the VTR by as many frames as necessary.

Format:<SYNC>

51 COLOUR FRAMER SELECT selects the colour framer mode

Format: COLOUR FRAMER SELECT> <MODE> 1-byte special binary code: 52

		bit 7 (msb):		 2 field lock NTSC 4 field lock PAL/SECAN 4 field lock STSC 8 field lock PAL/SECAM
		bit 6:	0 = norm 1 = invert	
		bits 3 - 0:		ntains binary number, which specifies from the lock specified above in units
		Exception:	FFh = as	selected locally
EDIT FIELD select	SELECT ts the edit field.			
Format:	<edit field<="" td=""><td></td><td></td><td></td></edit>			
	<mode></mode>	1-byte spec	ial binary c	code:
00h = start of field 1 always 01h = start of field 2 always 02h = at next vertical in immediate mode, or determined by field bit of timeline if in timeline mode FFh = as selected locally				
CHASE (TM	command)			

53 CHASE (TMC command)

maintains a given time offset between the selected tape code of the machine and the specified timeline using appropriate transport mode as determined by the timeline (usually with "external reference time" source; see common message TIMELINE SOURCE).

Format:	<chase> <offset time=""> (t</offset></chase>	ype TIME); definition:
	offse	et - slave - master
	e.g.:	if slave is to lead by one minute send: 00 01 00 00; if slave is to lag by one minute send: 23 59 00 00;
	i.e.	'24 hours complement' notation.
	ME SOURCE SELECT e source for the LTC tin	necode generator of the controlled VTR.

Format: <TCG LTC TIME SOURCE SELECT> 1-byte special binary code: <TIME SOURCE>

54

00h = hold

- 01h = run independently, starting with the value contained in information field item PRESETTABLE TIME SOURCE LTC
- 02h = run with external unspecified source
- 03h = run with the regenerated value of the LTC timecode as source (also contained in information field LTC FROM TAPE) until a record ENTRY of the LTC track; then continue independently, running with the time value most recently read from tape; i.e. "Jamsync" function
- 04h = run with regenerated VITC timecode from tape as source (also contained in information field VITC FROM TAPE); i.e. "copy" function
- 05h = run with TAPE CODE as source (also contained in information field TAPE CODE)
- 55 TCG VITC TIME SOURCE SELECT selects the time source for the VITC timecode generator of the controlled VTR.
 - Format: <TCG VITC TIME SOURCE SELECT> <TIME SOURCE> 1-byte special binary code:
 - 00h = hold
 - 01h = run independently, starting with the value contained in information field item PRESETTABLE TIME SOURCE VITC
 - 02h = run with external, unspecified source
 - 03h = run with the regenerated value of the VITC timecode as source (also contained in the information field VITC FROM TAPE) until a record ENTRY of-the VITC track; then continue, independently, running with the time value most recently read from tape; i.e. "Jam sync" function
 - 04h = run with regenerated LTC timecode from tape as source (also contained in information field LTC FROM TAPE); i.e. "copy" function
 - 05h = run with TAPE CODE as source (also contained in information field TAPE CODE)
- 56 TCG LTC USERBIT SOURCE SELECT selects the userbit source for the LTC timecode generator of the controlled device.

Format: <TCG LTC USERBIT SOURCE SELECT>

<USERBIT SOURCE> 1-byte special binary code:

- 00h = no userbits; i.e. all set to zero (= default)
- 01h = userbits from information field item PRESETTABLE USERBIT SOURCE LTC, which may be preset by a PRESET command
- 02h = userbits from external, unspecified source
- 03h = userbits continuously copied from the LTC timecode from tape (also contained in information field USERBITS FROM TAPE LTC)
- 04h userbits continuously copied from VITC timecode from tape (also contained in information field USERBITS FROM TAPE

57 TCG VITC USERBIT SOURCE SELECT

selects the userbit source for the VITC timecode generator of the controlled device.

Format: <TCG VITC USERBIT SOURCE SELECT> <USERBIT SOURCE> 1-byte special binary code:

00h = no userbits; i.e. all set to zero (= default)

- 01h = userbits from information field item PRESETTABLE USERBIT SOURCE VITC, which may be preset by a PRESET command
- 02h = userbits from external, unspecified source
- 03h userbits continuously copied from the VITC timecode from tape (also contained in information field USERBITS FROM TAPE VITC)
- 04h userbits continuously copied from the LTC timecode from tape (also contained in information field USERBITS FROM TAPE
- 58 EJECT/UNTHREAD (TMC command) eject for cassette or unthread where applicable.

Format: <EJECT/UNTEREAD>

- 59 not used
- 5A not used
- 5B not used
- 5C not used
- 5D not used

EBU - Video tape-recorder type-specific messages

5E TRACKING SELECT selects tracking mode.

Format:	<tracking select=""></tracking>	
	<mode></mode>	1-byte special binary code:

00h = FIXED (= default) 01h = AUTO FFh = as selected locally

5F ANTI-CLOG CONTROL switches the anti-clog mechanism on/off.

Format:	<anti-clog control=""></anti-clog>		
	<mode></mode>	1-byte special binary code:	
		00h = ON (= default)	
		01h = OFF	

02h = extended03h = immediate tension releaseFFh = as selected locally

60 PRESET

presets the named information field to the given value.

Format: <PRESET>
<PERMITTED INFORMATION FIELD NAME>
<VALUE>
format and coding defined by the INFORMATION NAME
(see Section 3: Information fields)

Permitted information field names for VTRs are:

T T 1 T T 2 SYNC VELOCITY PREROLL DURATION SYNC POINT TAPELENGTH PARKING ACCURACY SYNCHRONISM ACCURACY CHANNEL RECORD MASK PRESETTABLE TIME SOURCE LTC PRESETTABLE TIME SOURCE VITC PRESETTABLE UB SOURCE LTC PRESETTABLE UB SOURCE VITC

- 61 not used
- 62 not used
- 63 not used
- 64 not used

tech 3245

65 PLAYBACK CHANNEL SELECT selects the playback/monitoring channels.

```
Format: <PLAYBACK CHANNEL SELECT>
<CHANNELS> 3-byte bit mask:
```

```
bit 0 (lsb) = video

bit 1 = sync track

bit 2 = VITC

bit 3 = reserved

bit 4 = reserved

bit 5 = reserved

bit 6 = reserved

bit 7 = LTC

bits 8 - 23 = audios 1 - 16 respectively

Logic: 0 = playback channel (= default for all channels)

1 = monitor channel (audio)

record channel (video)
```

Note: Bits 0-7 form the least-significant byte; this byte is transmitted last.

- 66 CHANNEL MUTE SELECT selects auto mute function.
 - Format: <CHANNEL MUTE SELECT> <CHANNELS> 3-byte bit mask:
 - bit 0 (lsb) = video bit 1 = sync track bit 2 = VITC bit 3 = reserved bit 4 = reserved bit 5 = reserved bit 6 = reserved bit 7 = LTC bits 8 - 23 = audios 1 - 16 respectively Logic: 0 = mute enabled

1 =mute disabled

Note: Bits 0-7 form the least-significant byte; this byte is transmitted last.

67 TAPE/EE SELECT

selects the tape/electronics switch.

Format: <TAPE/EE SELECT> <MODE> 1-byte special binary code:

> 00h = AUTO (- default) 01h = TAPE 02h = EE FFh = - as selected locally

- 68 not used
- 69 not used
- 6A not used
- 6B not used
- 6C not used
- 6D not used
- 6E not used
- 6F not used

3. Information fields

Note: The items of the INFORMATION FIELD are accessed by the common messages READ, UPDATE, CYCLE or SIMULTANEOUS READ.

They are tallied by the common messages INFORMATION FIELD ITEM RESPONSE or SIMULTANEOUS READ RESPONSE.

These commands use the format: <KEYWORD><PARAMETER NAME> and <KEYWORD><PARMETER NAME><PARAMETER VALUE>

where the PARAMETER NAME uses the FIELD NAME specified below and the PARAMETER VALUE carries the FIELD CONTENTS specified below.

Several names/values may be grouped together by means of a BEGIN/END construct.

At power-up the content of information fields is not specified.

40 not used

41 LTC FROM TAPE contains the longitudinal timecode value most recently read from tape.

Format:	<ltc from="" tape=""> <code validity=""></code></ltc>	1-byte special binary code:		
		01h =	valid LTC derived LTC not valid LTC	
	<time value=""></time>		standard "time" format	

tech 3245

43

44

42 VITC FROM TAPE

contains the vertical interval timecode value most recently read from tape.

Format:	<vitc from="" tape=""> <code validity=""></code></vitc>	1-byte special binary code:
		00h = valid VITC 01h = derived VITC FFh = not valid VITC
	<time value=""></time>	standard "time" format
contains th	D TAPE CODE ne time value of that code (L y the TAPE CODE SELECT	TC, VITC, etc.) which has been most recently Γ command.
Format:	<selected cod<br="" tape=""><identifier></identifier></selected>	E> 1-byte special binary code:
		00h = LTC 01h = VITC 02h = T T 1 03h = T T 2 04h = auto TC FFh = invalid
	<time value=""></time>	standard "time" format
	S FROM TAPE LTC e LTC userbit contents most	recently read from tape.
Format:	<userbits from="" taph<br=""><ub specification=""> <ub 8="" g<br="" group="" ub=""><ub 6="" g<br="" group="" ub=""><ub 4="" g<br="" group="" ub=""><ub 2="" g<br="" group="" ub="">(MSnibble)</ub></ub></ub></ub></ub></userbits>	 1-byte special code: bits 0,1: 0,0 - content of userbits unspecified 0,0 - content of userbits is eight-bit character set conforming to ISO 646 and ISO 2022 0,1 - unassigned 1,1 - unassigned bit 2: 0 - unassigned 1 - content of userbits is secondary time data in standard time format Bits 3-7: 0 - set to 0 until assigned ROUP 7> 4 bytes, each consisting of two ROUP 5> 4-bit nibbles, each containing one ROUP 3> UB group

Note: UB 1 is the UB group which comes first on the tape.

- 45 USERBITS FROM TAPE VITC contains the VITC userbit contents most recently read from tape.
- 46 T T 1 (tape timer 1) contains the instantaneous counting status of tape timer 1.

Format: <T T > <TIME VALUE>

standard "time" format

47 T T 2 (tape timer 2) contains the instantaneous counting status of tape timer 2.

> Format: <T T 2> <TIME VALUE>

standard "time" format

48 READY TALLY tallies the status set by the READY SELECT command.

Format:	<ready tally=""></ready>		
	<switch></switch>	boolean value:	00h = OFF
			01h = ON

49 SERVO REFERENCE TALLY tallies the status set by the SERVO REFERENCE SELECT command.

Format: <SERVO REFERENCE TALLY> <MODE> 1-byte special binary code: 00h = auto select 01h = video in 02h = external ref input

4A RECORD MODE TALLY tallies the status set by the RECORD MODE SELECT command.

Format: <RECORD MODE TALLY>
<MODE> 1-byte special binary code:

00h = record disable 01h = insert 02h = assemble; all channels 03h = assemble; channel selectable 04h = rehearsal05h = crash record

tech 3245

4B CHANNEL RECORD STATUS tallies the status of the recording channels controlled by the ENTRY and EXIT commands.

```
Format: <CHANNEL RECORD STATUS>
<CHANNELS> 3-byte bit mask:
```

```
bit 0 (lsb) = video
bit 1 = sync track
bit 2 = VITC
bit 3 = reserved
bit 4 = reserved
bit 5 = reserved
bit 6 = reserved
bit 7 = LTC
bits 8 - 23 = audios 1 - 16 respectively
```

Logic: 0 = not recording1 = recording

Note: Bits 0-7 form the least-significant byte; this byte is transmitted last.

4C CHANNEL RECORD MASK

tallies the status of a record mask that enables/disables a single channel, or all channels, for recording.

Format:	<channel mask="" record=""></channel>		
	<channels></channels>	3-byte bit mask:	

bit 0 (lsb) = video bit 1 = sync track bit 2 = VITC bit 3 = reserved bit 4 = reserved bit 5 = reserved bit 6 = reserved bit 7 = LTC bits 8 - 23 = audios 1 - 16=respectively Logic: 0 = enabled (= default)

1 = disabled

Note: Bits 0-7 form the least-significant byte; this byte is transmitted last.

- 4D TAPE CODE SELECTION TALLY tallies the code currently selected by the most recent TAPE CODE SELECT command.
 - Format: <TAPE CODE SELECTION TALLY> <CODE TYPE> 1-byte special binary code:

00h = longitudinal timecode 01h = vertical interval timecode 02h = T T 1 03h = T T 204h = auto TC EBU - Video tape-recorder type-specific messages

LDO	11000 1000 1000		loobugoo			
4E	SYNC VELOCITY					
	contains a vel	ains a velocity used as the synchronization velocity for the SYNC command				
	Format:	<sync td="" velo<=""><td>CITY></td><td></td><td></td></sync>	CITY>			
	i onnat.	<speed></speed>		ned binary nu	umber; 2's complement	
			0000 hex = s	•	r · · · ·	
					-speed forward	
		71		approximatel forward	y 127 times standard play-speed	
		F	F0000hex =	standard play	y-speed reverse	
		80	800000hex = 128 times standard play-speed reverse.			
		This is the same coding as in the argument of the VARIABLE PLAY command.				
	Default is standard play-speed forward.				ed forward.	
4F	F PREROLL DURATION					
	contains the p	preroll time used in	n advance of	synchronizir	ng processes.	
	Format: <preroll duration=""></preroll>					
	Polinat.	<time td="" valu<=""><td></td><td></td><td>ndard "time" format</td></time>			ndard "time" format	
50	SYNC POIN	Г				
	contains a TA	a TAPE CODE value used as the SYNChronization POINT for the SYNC command.				
	Format:	<sync point=""></sync>				
		<time td="" valu<=""><td></td><td>star</td><td>ndard "time" format</td></time>		star	ndard "time" format	
51	COLOUR FR	AMER TALLY				
51	COLOUR FRAMER TALLY tallies the status of the colour framer selected by the COLOUR FRAMER SELECT command.					
	Format:	<colour fr<="" td=""><td>AMER TAI</td><td>LLY></td><td></td></colour>	AMER TAI	LLY>		
		<mode> 1-byte special binary code:</mode>				
			bit 7:	0 = OFF	- 2 field lock NTSC	
			(msb)	$0 - 01^{\circ}1^{\circ}$	- 4 field lock PAL/SECAM	
			× ,			
				1 - ON	- 4 field lock NTSC - 8 field lock PAL/SECAM	
			bit 6:	0 = norm	al lock	
					ted lock	

bits 3 - 0 = nibble contains binary number, which specifies an offset from the lock specified above, in units of fields

29

52 EDIT FIELD TALLY. tallies the status act by the EDIT FIELD SELECT command.

Format:	<edit field="" tally=""></edit>		
	<mode></mode>	1-byte special binary code:	
	00h =	start of field 1 always	
	01h =	start of field 2 alwys	
	02h =	at next vertical in i~diate mode, or determined by field bit of	
		timeline if in timeline mode	
	FFh =	as selected locally	

- 53 not used
- 54 TCG LTC TIME SOURCE TALLY tallies the status of the timecode generator for the longitudinal timecode selected by the TCG LTC TIME SOURCE SELECT command.

Format[.] <TCG LTC TIME SOURCE TALLY> <TIME SOURCE> 1-byte special binary code: 00h =hold running independently, started with the value contained in 01h =information field item PRESETTABLE TIME SOURCE LTC 02h =running with external, unspecified source 03h =running with the regenerated value of the LTC timecode as source (also contained in the information field LTC FROM TAPE) until a record ENTRY of the LTC track; then continuing independently, running with the time value most recently read from tape, i.e. "jam=sync" function 04h = running with regenerated VITC timecode from tape as source (also contained in information field VITC FROM TAPE); i.e. "copy" function 05h =running with TAPE CODE as source (also contained in

- 05h = running with TAPE CODE as source (also contained in information field TAPE CODE)
- 55 TCG VITC TIME SOURCE TALLY tallies the status of the timecode generator for the vertical interval timecode selected by the TCG VITC TIME SOURCE SELECT command.

Format:	<tcg th="" timi<="" vitc=""><th></th></tcg>			
	<time source=""></time>	> 1-byte special binary code:		
	00h =	hold		
	01h =	running independently, started with the value contained in		
		information field item PRESETTABLE TIME SOURCE		
		VITC		
	02h =	running with external, unspecified source		
	03h =	running with the regenerated value of the VITC timecode as		
		source (also contained in the information field VITC FROM		
		TAPE) until a record EMY of the VITC track; then		
		continuing independently, running with the time value most		
		recently read from tape, i.e. "Jam=sync" function		

- 04h = running with regenerated LTC timecode from tape assource (also contained in information field LTC FROM TAPE); i.e. "copy" function
- 05h = running with TAPE CODE as source (also contained in information field TAPE CODE)

56 TCG LTC USERBIT SOURCE TALLY

tallies the status of the timecode generator for the longitudinal timecode selected by the TCG LTC UB SOURCE SELECT command.

Format: <TCG LTC USERBIT SOURCE TALLY> <USERBIT SOURCE> 1-byte special binary code:

- 00h = no userbits; i.e. all set to zero
- 01h = userbits from information field item PRESETTABLE USERBIT SOURCE LTC, which may be preset by a PRESET command
- 02h = userbits from external, unspecified source
- 03h = userbits continuously copied from the LTC timecode from tape (also contained in information field USERBITS FROM TAPE LTC)
- 04h = userbits continuously copied from the VITC timecode from tape (also contained in information field USERBITS FROM TAPE =VITC)

57 TCG VITC USERBIT SOURCE TALLY

tallies the status of the timecode generator for the vertical interval timecode selected by the TCG VITC UB SOURCE SELECT command.

Format: <TCG VITC USERBIT SOURCE TALLY> <USERBIT SOURCE> 1-byte special binary code:

- 00h = no userbits; i.e. all set to zero
- 01h = userbits from information field item PRESETTABLE USERBIT SOURCE VITC, which may be preset by a PRESET command
- 02h = userbits from external, unspecified source
- 03h = userbits continuously copied from the VITC timecode from tape (also contained in information field USERBITS FROM TAPE VITC)
- 04h. = userbits continuously copied from the LTC timecode from tape (also contained in information field USERBITS FROM TAPE LTC)

i.e. it

- 58 not used
- 59 not used

5A TAPELENGTH contains the length of the loaded tape.

Format <TAPELENGTH> <TIME VALUE> standard "time" format

5B PARKING ACCURACY

contains a time value that determines the accuracy of parking processes performed by certain commands, e.g. TARGET SEARCH, PREROLL SEARCH

Format: <PARKING ACCURACY> <FIELDS> 1-byte unsigned number

Note: FFh (as locally specified) shall be used in the PRESET command only. It shall not be used in an INFORMATION FIELD ITEM RESPONSE.

- 5C SYNCHRONISM ACCURACY contains a time value that determines the accuracy of synchronizing processes, specifies the maximum allowed offset error at the SYNC POINT.
 - Format: <SYNCHRONISM ACCURACY> <FIELDS> 1-byte unsigned number
 - Note. FFh (as locally specified) shall be used in the PRESET command only. It shall not be used in an INFORMATION FIELD ITEM RESPONSE.
- 5D not used
- SE TRACKING SELECTION TALLY tallies the status act by the TRACKING SELECT command.
 - Format: <TRACKING SELECTION TALLY> <MODE> 1-byte special binary code:
 - 00h = FIXED01h = AUTO
- 5F ANTI-CLOG CONTROL TALLY tallies the status of the anti-clog mechanism, which is controlled by the ANTI-CLOG CONTROL command.
 - Format: <ANTI-CLOG CONTROL TALLY>
 <SWITCH STATUS> 1-byte special binary code:

00h = ON 01h = OFF 02h = extended03h = immediate tension release 60 not used

61 TMC TALLY

tallies the current transport motion command of the VTR, and specifies its success in accomplishing the command.

Format: <TMC TALLY> <KEYWORD> 1-byte value that contains the keyword of the last commanded TMC from either immediate or timeline mode.

<SUCCESS LEVEL> 1-byte special binary code:

- 00h = trying; transition in process
- 01h = successful
- 02h = failure; this tally should be supplemented by an ERROR message as appropriate

62 VELOCITY TALLY

tallies the current transport velocity. Note that this is the true velocity in all TMC modes.

Format:	<veloc< th=""><th>ITY TALLY</th><th>~></th></veloc<>	ITY TALLY	~>
	<speed></speed>		3-byte signed binary number; 2's complement
	scale:	000000h =	still
		010000h =	standard play-speed forward.
	7F0000h =		approximately 127 times standard play-speed forward
		FF0000h =	standard play-speed reverse
		800000h =	128 times standard play-speed reverse.

this is the same coding as in the argument of the VARIABLE PLAY command.

- 63 TIMELINE CORRECTION TALLY tallies the number of fields advanced by the-machine internal clock following a TIMELINE RUN command.
 - Format: <TIMELINE CORRECTION TALLY> <FIELDS> 1-byte signed binary number
- 64 not used
- 65 PLAYBACK CHANNEL TALLY tallies the status of the playback channels selected by the PLAYBACK CHANNEL SELECT command.

Format:	<playback chan<="" th=""><th></th><th></th></playback>				
	<channels></channels>	3-byt	e bit mask:		
	bit 0 (lsb) =	bit 0 (lsb) = video			
	bit $1 = sync$	bit $1 =$ sync track			
	bit $2 = VIT$	bit $2 = VITC$			
	bit $3 = reserved$				
	bit $4 = reserved$	rved			
	bit $5 = reserved$				
	bit $6 = reset$	bit $6 = reserved$			
	bit $7 = LTC$				
bits $8 - 23 =$ audios $1 - 16$ respect			s 1 - 16 respectively		
	Logic:		playback channel monitor channel (audio) record channel (video)		

Note: Bits 0=7 form the least-significant byte; this byte is transmitted last.

66 CHANNEL MUTE TALLY

tallies the status of the auto mute function selected by the CHANNEL MUTE SELECT command.

Note: Bits 0=7 form the least-significant byte; this byte is transmitted last.

67 TAPE/EE TALLY tallies the status of the tapelelectronics switches controlled by the TAPEIEE select command.

Format: $\langle TAPE/EE \rangle$ $\langle SWITCH \rangle$ 1-byte special binary code: 00h = AUTO01h = TAPE02h = EE 68 TIMECODE TO TAPE LTC contains the current longitudinal timecode value being generated by the timecode generator.

Format: <TIMECODE TO TAPE LTC> <TIME VALUE> standard "time" format

- 69 TIMECODE TO TAPE VITC contains the current vertical interval timecode value being generated by the timecode generator. Format: <TIMECODE TO TAPE VITC> <TIME VALUE> standard "time,, format
- 6A. USERBITS TO TAPE LTC contains the current userbits contents being generated by the timecode generator to go with the longitudinal timecode.

Format:	<userbits ltc="" tape="" to=""></userbits>	
	<ub specification=""></ub>	for format description, see
	<ub 7="" 8="" group="" ub=""></ub>	"USERBITS FROM TAPE LTC"
	<ub 5="" 6="" group="" ub=""></ub>	
	<ub 3="" 4="" group="" ub=""></ub>	
	<ub 1="" 2="" group="" ub=""></ub>	

6B USERBITS TO TAPE VITC contains the current userbit contents being generated by the timecode generator to go with the vertical interval timecode.

Format:	<userbits tape="" to="" vitc=""></userbits>	
	<ub specification=""></ub>	for format description, see
	<ub 7="" 8="" group="" ub=""></ub>	"USERBITS FROM TAPE LTC"
	<ub 5="" 6="" group="" ub=""></ub>	
	<ub 3="" 4="" group="" ub=""></ub>	
	<ub 1="" 2="" group="" ub=""></ub>	

- 6C PRESETTABLE TIME SOURCE LTC contains a time value that can be PRESET and be used to start the LTC timecode generator by selecting it in a TCG LTC TIME SOURCE SELECT command.
 - Format: <PRESETTABLE TIME SOURCE LTC> <TIME VALUE> standard "time" format
- 6D PRESETTABLE TIME SOURCE VITC contains a time value that can be PRESET and be used to start the VITC timecode generator by selecting it in a TCG VITC TIME SOURCE SELECT command.
 - Format: <PRESETTABLE TIME SOURCE VITC> <TIME VALUE> standard "time" format

- 6E PRESETTABLE UB SOURCE LTC contains a userbit pattern that can be PRESET and be used by the LTC timecode generator by selecting it in a TCG LTC UB SOURCE SELECT command.
- 6F PRESETTABLE UB SOURCE VITC contains a userbit pattern that can be PRESET and be used by the VITC timecode generator by selecting it in a TCG VITC UB SOURCE SELECT command.

Reproduction, even in part, of this publication is forbidden except with the prior, written authority of the Publisher

REMOTE CONTROL SYSTEM FOR BROADCASTING PRODUCTION EQUIPMENT AUDIO TAPE-RECORDER TYPE-SPECIFIC MESSAGES

3 February 1989

CONTENTS

Introduction	3
Chapter 1 - General concepts	5
1. Command Keywords and Information Fields	6
 Transport Motion Process and State Control. TMP commands TMS commands TMP I/F tallies TMS I/F tallies. 	7 7 7
3. Audio Record Corn and (ARCs) and Tallies	8
4. Audio Monitor Commands (AMCs) and Tallies	8
5. Velocity Arguments	9
6. Track Selection Arguments	9
7. Tape Code Identity	10
 Achieving and Maintaining Synchronisation. 8.1. LOCK Operations	
9. The TIMELINE and other Event Triggers	16
 10. Sample Command Sequences	
Chapter 2 - ATR type-specific messages	22
 Index of keywords, mnemonics and information field names 1.1. Numerical index 1.2. Functional Index 	23
2. Keywords	27
3. Information Fields	

Technical Centre of the European Broadcasting Union Avenue Albert Lancaster 32, B-1180 Bruxelles (Belgium)

Introduction

Document Tech. 3245 describes the specification of a digital remote-control system for broadcasting production equipment. It defines completely the electrical/mechanical level (level 1), and the supervisory level (level 2), of the interface. The two remaining levels - the system service level (level 3), and the virtual machine level (level 4) - are defined only in terms of function and control message syntax.

Supplement 1 to Tech. 3245 completes the definition of the system service level by detailing the system service messages and, in addition, defines the virtual machine messages which are common to all types of virtual machine - the common messages.

The present Supplement defines the type-specific virtual machine messages which are applicable to audio tape-recorders. Type-specific messages applicable to other categories of equipment are defined in other supplements to Tech. 3245.

In order to implement a complete network, the system designer therefore requires:

- Document Tech. 3245	- the general specification
- Supplement 1	- system service and common messages

and one or more other supplements appropriate to the category or categories of equipment to be used.

The specification described in this Supplement has been developed jointly with the SMPTE, and is functionally identical to that to be published as an SMPTE Recommended Practice.

Chapter 1

General concepts

This chapter contains a general explanation of some of the concepts used in the formulation of the ATR type-specific message set. It constitutes tutorial information, and is intended to assist in the understanding of the specifications in Chapter 2 of this document. A working knowledge of the following ESbus topics, which have been covered by earlier publications in this series, is assumed:

- ESbus system overview
- Control message architecture
- Supervisory protocol
- Tributary interconnection
- Electrical and mechanical characteristics
- System service and common messages

The ATR type-specific dialect shares many conceptual constructs with the VTR type-specific dialect; however there are significant differences in the form and function of their command structures. The reader is cautioned not to assume that a transparency of control messages between the dialects has been provided.

Conventions:

- Acronyms and abbreviations are shown in upper-case characters.

e.g. Audio tape-recorder: ATR Tape motion state: TMS Information field. I/F

- Message keywords and names of information fields are shown in upper-case characters.

e.g. RECORD STROBE REQUESTED OFFSET

- These command keywords and information field names are used within the text of this document to imply requested action, information field identity, and in turn the information field contents of the virtual machine. To assist the readability of this document, these terms are used in the context of the presentation material.

e.g. :

"There are six modes available for LOCK MODE SELECTion".

(LOCK MODE SELECT is a keyword)

"This point in time is defined by the specification of the LOCK TIME I/F".

("LOCK TIME I/F" in this context identifies an information field)

"The ACTUAL OFFSET is maintained independent of the synchronization status".

("ACTUAL OFFSET" in this context refers to the content of an information field.)

- Terms having special meanings in this or related documents are shown with leading upper-case characters :

e.g. Tape Motion Process Local Lock Point

1. Command Keywords and Information Fields

ATR-specific commands affect conditions or selection of characteristics particular to the ATR virtual machine. Commands that produce non-mutually-exclusive conditions have individual information fields. In order to ascertain the existing state, a " Tally " message corresponding to a particular command may be sent; the response information field is in the same format as that of the corresponding command. Commands that produce mutually-exclusive conditions may have the same information field.

2. Transport Motion Process and State Control

The transport mechanism of an ATR is considered as a separate State Machine. The commands which control transport functions are in a subset of the ATR-specific message set. These are called the Tape Motion Process and State commands (TMPs and TMSs). Each TMS command causes a transition into a transport state and cancels the previous state. Tape Motion Processes (indicated below as "TMP") are overriding control commands that cause the controlled device to enter the appropriate Tape Motion State automatically so as to achieve the desired result. This Tape Motion State will be reported in the TMS tally as though that TMS had been issued.

2.1. TMP commands

TMP command include:

TARGET SEARCH, PREROLL SEARCH, CHASE

All Tape Motion Process commands are marked "TMP" in the index list and in the command description.

2.2. TMS commands

TMS commands include:

STOP, PLAY, SHUTTLE, LOCK, etc.

All Tape Motion State commands are marked "TMS" in the index list and in the command description.

2.3. TMP I/F tallies

These information fields indicate the current state of Tape Motion Process. As these processes are mutually-exclusive and commanded by TMP commands, the code of the corresponding TMP keyword is used to identify each information field individually. An additional byte indicates (tallies) the level of success, i.e. whether the commanded process is still in progress, has been completed, and whether successfully or not.

2.4. TMS I/F tallies

These information fields indicate the current state of the transport. As these states are mutuallyexclusive commanded by TMS commands, the code of the corresponding TMS keyword is used to identify each information field individually. An additional byte tallies the level of success, i.e. whether the commanded state function is still in progress or has been completed, and whether successfully or not.

3. Audio Record Corn and (ARCs) and Tallies

The recording function of the tape machine is controlled **and tallied by the following keywords and** I/Fs, respectively:

REHEARSE SELECT	REHEARSE TALLY
RECORD STROBE	CHANNEL RECORD STATUS
RECORD EXIT	-
RECORD READY SELECT	RECORD READY TALLY

RECORD READY SELECT provides a means to designate the channels that will enter (or exit) a recording condition upon the receipt of a RECORD STROBE.

RECORD EXIT terminates the recording condition on any channels where this condition exists.

REHEARSE SELECT provides a means to designate the channels that will, when subsequently commanded to enter a recording condition, simulate a recording operation, in accordance with the corresponding pending Audio Monitor Commands (AMCs).

4. Audio Monitor Commands (AMCs) and Tallies

The manner in which the Audio Line Output Source selections are made is controlled and tallied by the following keywords and I/Fs, respectively:

GLOBAL MONITOR SELECT	GLOBAL MONITOR TALLY
EXCLUSIVE SYNC SELECT	EXCLUSIVE SYNC TALLY
SYNC INPUT SELECT	SYNC INPUT TALLY

GLOBAL MONITOR SELECT controls whether Playback, Synchronous Playback (sync), or input signals are fed to the respective line outputs. of all audio channels.

EXCLUSIVE SYNC SELECT provides a means to select the individual audio channels that will, in the absence of any GLOBAL MONITOR SELECTion, feed synchronous playback to the Line Output in accordance with the SYNC-INPUT I/F.

SYNC INPUT SELECT provides a means to choose the monitor switching configuration used during record-related functions. These monitor switching configurations apply only to those channels selected for Synchronous Playback.

5. Velocity Arguments

Some commands include a speed specification which is carried in the form of an accompanying threebyte parameter block. This parameter defines the direction and absolute value of the desired speed that should be achieved as closely as possible by the real machine. This speed is expressed in terms of the current nominal play speed as defined by the FIXED SPEED SELECT I/F.

Commands having a velocity parameter in the form of a three-byte 2's complement signed number have a scale-range defined such that:

000000 h represents a stationary condition*^{*} 010000 h represents the speed currently defined in I/F FIXED SPEED, forward direction 7F0000 h represents approximately 127 times FIXED SPEED, forward direction FF0000 h represents FIXED SPEED, reverse direction 800000 h represents 128 times FIXED SPEED, reverse direction.

This format thus has, theoretically, a resolution of 1/65,536th of nominal speed, i.e. an effective speed range of - 128.0000 to + 127.99998 times FIXED SPEED (rounded to five decimal places).

6. Track Selection Arguments

Some commands and information fields refer to one or more channels (or tracks) of the tape machine. The format used is the same in all cases and it consists of an eight-byte bit map. This allows for up to 64 channels to be controlled. The command keywords and I/Fs that utilize this channel-specific mapping are:

REHEARSE SELECT	REHEARSE TALLY
RECORD READY SELECT	RECORD READY TALLY
EXCLUSIVE SYNC SELECT	EXCLUSIVE SYNC TALLY
	CHANNEL RECORD STATUS

^{*} The letter h appended to a number indicates that it is expressed in hexadecimal notation.

7. Tape Code Identity

At present, points on the tape can be identified by two means:

These are :

- INTERNAL LTC (longitudinal timecode from tape)

- TAPETIMER

The INTERNAL LTC and the TAPETIMER each have a separate information field. The content of the SELECTED TAPE CODE I/F, which designates which of these means is selected, is determined by the TAPE CODE SELECT command.

TARGET SEARCH, SYNC PREROLL SEARCH and LOCK PREROLL SEARCH cause the controlled device to locate a position on the tape, referenced to the SELECTED TAPE CODE.

8. Achieving and Maintaining Synchronisation

8.1. LOCK Operations

Synchronisation requires the controlled device to achieve and maintain a particular time relationship between its INTERNAL LTC and some external reference. The maintenance of this relationship is usually restricted to within some speed range around the nominal FIXED SPEED.

The external reference signal to which synchronisation is achieved and maintained may be selected from a number of alternative sources; the LOCK MODE SELECT command is used to select this signal.

The LOCK command establishes synchronisation. The following additional information is normally required:

- A specified EXTERNAL TIMECODE ("when")
- A specified point on the tape ("where")
- A selected external reference signal ("how").

- "When": This point in time is dermed by the contents of the LOCK TIME I/F. This specifies the time, expressed in term of the EXTERNAL TIMECODE, at which synchronism is assured between the EXTERNAL TIMECODE and the controlled device's INTERNAL LTC.
- "Where": This is a point on the tape called the Local Lock Point". The Local Lock Point may be expressed by two independent specifications. These are the aforementioned LOCK TIME I/F, and the REQUESTED OFFSET I/F.

The REQUESTED OFFSET I/F specifies the longitudinal time relationship between the EXTERNAL TIMECODE, and the controlled device's INTERNAL LTC. This REQUESTED OFFSET is maintained during successful synchronous operation.

Note: A related information field, the ACTUAL OFFSET IIF, is provided such that tallies of INTERNAL LTC minus the EXTERNAL TIMECODE may be facilitated.

The Local Lock Point may be calculated as the sum of the LOCK TIME I/F and the REQUESTED OFFSET I/F.

"How": The LOCK MODE SELECT command allows a choice in the manner in which synchronisation is achieved and maintained. Two different classes of synchronisation may be selected: "Absolute " and " Free ". There are four Absolute modes and two Free modes available for LOCK MODE SELECTion.

8.1.1. Absolute Modes of LOCK

-Absolute Standard Mode

Achievement and maintenance of the lock to EXTERNAL TIMECODE is data-dependent. External LTC is selected as the source of EXTERNAL TIMECODE.

Absolute Resolve Mode

Achievement of the lock to EXTERNAL TIMECODE is data-dependent; maintenance of lock is data-independent. External LTC is selected as the source of EXTERNAL TIMECODE.

- Absolute video Mode

Achievement of the lock to EXTERNAL TIMECODE is data-dependent; maintenance of the lock is by reference to external video. External LTC is selected as the source of EXTERNAL TIMECODE.

- Absolute VITC Mode

Achievement of the lock is by reference to external video with VITC, data-dependent; maintenance of the lock is by reference to external video. The external video VITC signal is selected as the source of EXTERNAL TIMECODE.

8.1.2. Free Modes of LOCK

- Free Resolve Mode

Achievement and maintenance of the lock is by reference to EXTERNAL TIMECODE dataindependent. External LTC is selected as the source of EXTERNAL TIMECODE.

- Free Video Mode

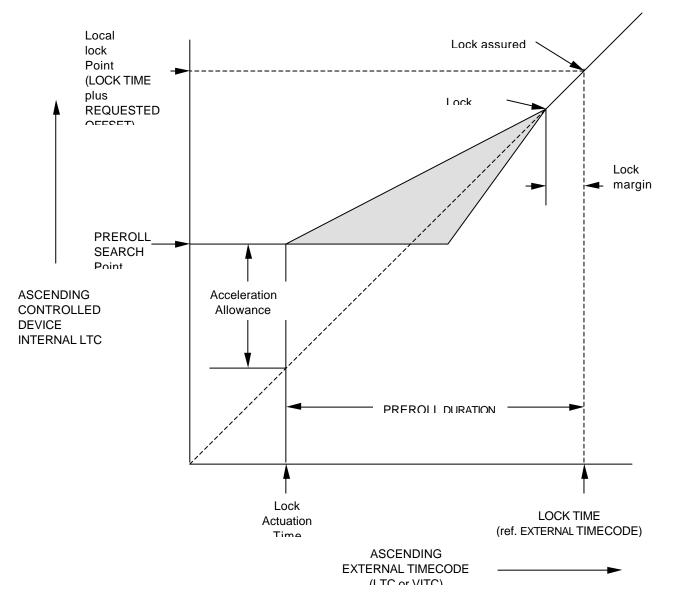
Achievement and maintenance of the lock is by reference to external video signal. The source of EXTERNAL TIMECODE is undefined.

8.1.3. LOCK Operation in Absolute Modes

Three important concepts must be established before any of the absolute modes of LOCK may be represented.

a) PREROLL DURATION

This specifies the time used or needed in advance of achieving synchronisation. The PREROLL DURATION I/F specifies the exact real-time period between the start of tape movement and the moment of encountering the specified LOCK TIME. It is assumed that EXTERNAL TIMECODE is presented to the device in a real-time manner during the preroll period. The PREROLL DURATION I/F may not be set to a value lower than the device-dependent lower limits.


b) LOCK PREROLL SEARCH

This TMP causes the tape on the controlled ATR to move until the position on it specified by the Local Lock Point minus the pre-defined PREROLL DURATION plus any device-specific "Acceleration Allowance" (see diagram) is correctly located. This position may be described as the PREROLL SEARCH Point.

c) "Lock Actuation "

In all absolute modes of the LOCK command, the condition which causes the start of tape movement intended to achieve and maintain synchronisation is always the coincidence of the EXTERNAL TIMECODE value with that of the pre-defined LOCK TIME I/F minus the pre-defined PREROLL DURATION I/F. The time (with reference to EXTERNAL TIMECODE) at which this occurs may be termed the Lock Actuation Time.

The source of the EXTERNAL TIMECODE that triggers the Lock Actuation may be either LTC or VITC. This choice is specified by the LOCK MODE SELECT.

LOCK OPERATION (Absolute Modes)

All LOCK commands issued in any absolute mode require pre-defined PREROLL DURATION, REQUESTED OFFSET and LOCK TIME I/Fs, and must be preceded with a LOCK PREROLL SEARCH command.

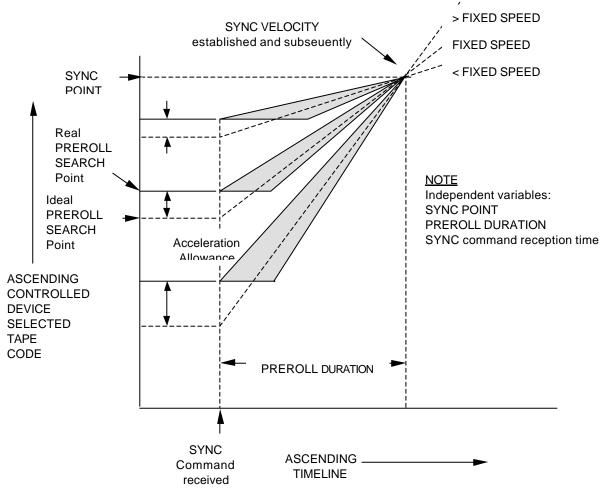
After the PREROLL DURATION, REQUESTED OFFSET and LOCK PREROLL SEARCH have been specified, an absolute LOCK command may be issued. When the EXTERNAL TIMECODE coincides with the Lock Actuation Time, the controlled device will accelerate and adjust its speed until its INTERNAL LTC coincides with the EXTERNAL TIMECODE, thereafter maintaining synchronism. For a LOCK to be successful, synchronism must be achieved prior to the LOCK TIME. Synchronous operation with the external reference (as specified by LOCK MODE SELECT I/F) will be maintained from the LOCK TIME onwards.

8.1.4. LOCK Operation in Free Modes

All LOCK commands issued in any free mode ignore any predefined PREROLL DURATION, REQUESTED OFFSET and LOCK TIME I/Fs and need not be prededed with a PREROLL SEARCH command. These LOCK facilities provide the means for achieving synchronisation immediately, without reference to a particular EXTERNAL TIMECODE.

If a change in LOCK MODE from any m ode to the ABSOLUTE STANDARD during a successful LOCK TMC, then the ACTUAL OFFSET I/F data is automatically transferred to the REQUESTED OFFSET I/F. LOCK is thereby maintained.

8.2. SYNC Operations


The external reference to which SYNC synchronization is to be achieved and maintained is prescribed by the common message TIMELINE SELECT.

The SYNC command establishes synchronization. Synchronization means that the machine is programmed to pass:

- a specified point on the tape ("where")

- at a specified instant in time ("when"), and

- at a specified velocity ("how").

- "Where": This is a point on the tape, defined by the SYNC POINT I/F, at which synchronization is assured between the selected TIMELINE and the controlled device's SELECTED TAPE CODE.
- "When": This is defined as the point in time at which the SYNC command is received plus the PREROLL DURATION time. (As the ESbus may not, by nature, be deterministic in the delivery timing of commands, it is advisable to use the common message " Event " construct to define the timing of this command.)
- "How": The velocity at the SYNC POINT is defined by the SYNC VELOCITY I/F.

As a prerequisite for the use of the SYNC command, the tape must be placed at a park position which is calculated from the SYNC POINT and the SYNC VELOCITY as follows:

PREROLL SEARCH POINT = SYNC POINT -

PREROLL DURATION x SYNC VELOCITY

FIXED SPEED

where FIXED SPEED is the speed defined in the FIXED SPEED I/F.

To achieve this park position the PREROLL SEARCH command is used and the ATR virtual machine must make the calculation automatically.

The SYNC Command in the Case of an "Ideal" Machine

A better understanding of the function of the SYNC command is possible if it is considered in the case of an "ideal" machine.

- On the arrival of a SYNC command an ideal ATR would start immediately with no delay, fully locked and at the specified speed. Under these ideal conditions the machine would, at the PREROLL DURATION time later, be precisely at the SYNC POINT.
- A real ATR cannot start and synchronize immediately; it is therefore the responsibility of the virtual machine, and hence of the virtual machine manufacturer, to control the real machine in such a manner that the result is the same.

Measures taken in order to correct synchronization following the PREROLL DURATION period may include:

- On the receipt of a PREROLL SEARCH command, parking at a PREROLL SEARCH point a few frames down the tape from the "ideal" PREROLL SEARCH point in order to match the average number of frames lost while coming up to play speed. This "Acceleration Allowance" is likely to be proportional to the SYNC VELOCITY.
- On the SYNC command, overriding the specified velocity using the tape speed override facility of the real machine to eliminate the remaining offset from the appropriate lock condition.

After establishing a PREROLL DURATION, and commanding a SYNC PREROLL SEARCH, a SYNC command may be issued. The controlled device will accelerate and synchronise to its SELECTED TAPE CODE to the TIMELINE reference.

For a SYNC to be successful, SYNC VELOCITY must be achieved relative to the TIMELINE reference, at the SYNC POINT, at precisely the PREROLL DURATION after the receipt of the SYNC command.

8.3. The CHASE Command

The CHASE command is an alternative means of maintaining synchronism.

While the PREROLL SEARCH and LOCK commands may be used to achieve and maintain synchronism among several machines continuously (without changing their states and/or speeds), the CHASE command is used to maintain synchronism in a dynamic manner as closely as possible, even during changes of the machine's state and/or velocity.

This operation, however, requires one of the synchronously running machines to be a "master", while the others have to act as " slaves " that follow the movement of the master, even in the SHUTTLE mode.

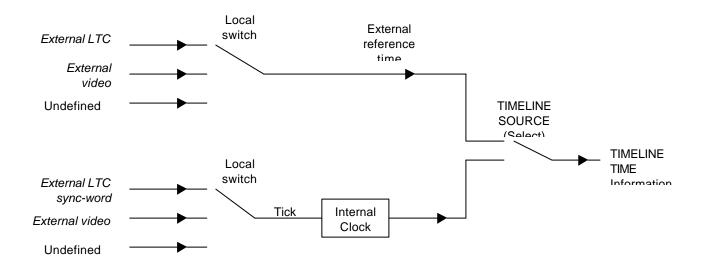
For this purpose the slaves must have information about the movement of the master; this information is distributed in the form of the master device's timecode. This timecode stream must be distributed continuously to all slaves over a separate line (the bus cannot be used for this purpose because of its indeterminate delay characteristics).

The CHASE command utilises the REQUESTED OFFSET I/F to establish any required longitudinal position relationships between the master and the controlled device. Synchronism is always established and maintained in a data-dependent manner, independent of the current LOCK MODE TALLY I/F.

9. The TIMELINE and other Event Triggers

All ATR commands can be used in an " immediate " manner in which they are executed as soon as they are received. In the case of some of the more time-critical applications, unacceptable delays may occur because the time between initiating a command and its reception via the bus is indeterminate. In these cases an alternative command method is recommended.

Wherever possible, time-critical commands should be prepared using the "Event " command facilities provided by the common message set. The common message DEFINE EVENT allows any type-specific message or the common message READ to be executed by the virtual machine at a specified Trigger Time. This trigger time may be specified by the common TIMELINE I/F, or by some type-specific Time I/Fs.


The ATR type-specific Time I/Fs that may be used as Event triggers are:

INTERNAL LTC	TAPETIMER
SELECTED TAPE CODE	EXTERNAL TIMECODE

ATR type-specific Time I/Fs that are not permitted for use as Event triggers are:

TAPELENGTH	REQUESTED OFFSET
LOCK DEVIATION	ACTUAL OFFSET

This common message TIMELINE SOURCE may be selected to be an internal dock, or an external reference time. There is no restriction as to the source of this external reference time. Should the external reference time be chosen as the intended TIMELINE SOURCE, it might be conceivable to configure a controlled device locally to use an external LTC signal or an external video with VITC signal as the TIMELINE TIME. Alternatively, when the internal clock is the intended TIMELINE SOURCE, the external " tick " which increments the internal clock might be derived locally from the sync-word of an external LTC signal, or an external video signal. These are only examples of what might be selected as external references or ticks; there are no restrictions on external reference signals (see diagram below).

TIMELINE SOURCE Selection

For activities requiring simultaneous operations by several controlled devices, the Event mode of command delivery, which allows sequences of time-critical functions (e.g. RECORD STROBE) to be preprogrammed, may be the most suitable.

Events may be referred to the TIMELINE of the individual virtual machines. These individual TIMELINE TIMEs are synchronised by a system the transmission from the bus controller in response to the system service REQUEST TIME TRANSMISSION command.

10. Sample Command Sequences

The following sections shows examples of typical command sequences including time-deferred Event constructs. These sequences describe only some of the applications of the command set; there is no obligation on the part of the system designer to use precisely these sequences. READ commands of the related I/Fs for system confidence are not shown; they should be an integral part of any reasonable controlling tributary's typical sequence.

10.1. Selective Record Entries and Exits

Some time before initial record action...

```
< RECORD READY SELECT> < 00000000 >
< 00000000 >
< 00000000 >
< 00000000 >
< 00000000 >
< 00000000 >
< 00000000 >
< 00000000 >
< 00000000 >
< 00000000 >
< 01010101 >
```

(channels 1, 3, 5, 7 are record-enabled)

<PLAY>

some time later...

<RECORD STROBE >

(the already-selected channels enter the recording condition)

some time later ...

<record ready="" select=""></record>	< 00000000 >	(64-bit map)
	2	
	,	
	,	
	, < 10101010>	

(channels 1, 3, 5, 7 are record-disabled. Channels 2, 4, 6, 8 are record-enabled. No change is made to the recording status of these tracks)

some time later... <RECORD STROBE>

(channels 1, 3, 5, 7 stop recording. Channels 2, 4, 6, 8 start recording)

some time later...

<RECORD EXIT

(the channels still recording, 2, 4, 6, 8 cease recording)

10.2. Event-Triggered Record Entries and Exits

Exactly the same actions as above may be accomplished through the use of the Event construct, although with more precise control of the RECORD STROBE times:

<RECORD READY SELECT> <00000000>

, , <01010101> (channels; 1, 3, 5, 7 are record-enabled)

<PLAY>

any time before the required record action sequence :

<define event=""></define>	<event 1="" name=""> <internal. ltc=""> <trigger 1="" value=""> <record strobe=""></record></trigger></internal.></event>	(user assigned) (I/F name of trigger) (standard "time" value)
<define event=""></define>	< event name 2 > <internal ltc=""> <trigger 2="" value=""></trigger></internal>	(user assigned) (I/F name of trigger) (standard "time" value)

(64-bit map)

<RECORD READY SELECT> <00000000>

,<10101010>

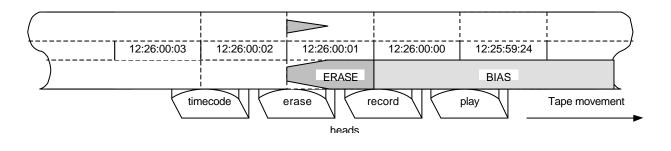
(channels 2, 4, 6, 8 are record-enabled)

<define event=""></define>	<event 3="" name=""> <internal ltc=""> <trigger 3="" value=""> <record strobe=""></record></trigger></internal></event>	(user-assigned) (I/F name of trigger) (standard "time" value)
<define event=""></define>	<event 4="" name=""> <internal ltc=""> <trigger 4="" value=""> <record exit=""></record></trigger></internal></event>	(user-assigned) (I/F name of trigger) (standard "time" value)

Notes: The above TRIGGER VALUES 1-4 are assigned with suitable ascending values respectively. These Events are established with the assumption that the controlled device will encounter these INTERNAL LTC triggers in ascending order

The controlling virtual machine need not "know" the device-specific record-initiation delays of the ATRs. It is the job of the virtual machine to resolve any internal, time dependent idiosyncrasies.

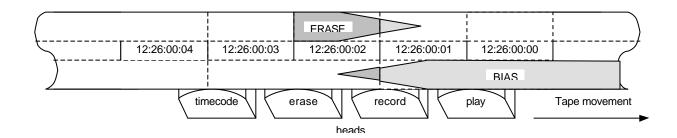
Example: An IEC centre-track format ATR is required simultaneously to enter record on track (channel) 1, and exit record on track 2 at an INTERNAL LTC of 12:26:00:02. The TIMECODE ATTRIBUTE I/F of the INTERNAL LTC indicates " 25 frame count code ".


Given an INTERNAL LTC I/F triggered ' RECORD STROBE Event, and working with an EBU/SMPTE timecode, the machine must:

- compensate for any longitudinal offsets of the controlled device's timecode playback head;

- control the transitions of the erase signal in advance of the virtual machine's INTERNAL LTC trigger point, to ensure that the erase signal starts and stops at the correct points on the tape.

Graphically represented:


Event time minus one frame<VIRTUAL MACHINE INTERNATAL LTC >< 12:26:00:01</td>><RECORD sequence begins</td>>< track 1 erase begins ramp up</td>>< track 2 erase begins ramp down</td>>

Event time


<VIRTUAL MACHINE INTERNAL LTC >

< 12:26:00:02 > <RECORD sequence in progress > <track 1 record begins ramp up > <track 2 erase exit completed >

Event time

<VIRTUAL MACHINE INTERNAL LTC > < 12:26:00:03 > <RECORD sequence completed >

If the above example were to include a RECORD STROBE Event triggered by the TIMELINE TIME I/F or EXTERNAL TIMECODE I/F, the requirements of the virtual machine would be basically unchanged. The record Event must occur at the Event time, regardless of any device-dependent preliminary process.

10.3. Search and Synchronise

Some time before the required synchronisation action:

<preset></preset>	<preroll duration=""></preroll>	(time value)
<preset></preset>	<lock point=""></lock>	(time value)
<preset></preset>	<requested offset=""></requested>	(high-resolution time value)
<lock mode="" select=""></lock>	<absolute mo<="" standard="" td=""><td>DE></td></absolute>	DE>

Note: After the PREROLL DURATION, LOCK POINT, REQUESTED OFFSET and LOCK MODE SELECT have been specified, they need not be retransmitted until a change is required.

<LOCK PREROLL SEARCH>

(not before a TMP TALLY has indicated that the LOCK PREROLL SEARCH has been successfully accomplished):

<LOCK>

On the receipt of the LOCK command, the ATR will monitor the longitudinal EXTERNAL TIMECODE. When the EXTERNAL TIMECODE coincides with "lock actuation time" calculated by the controlled device, the controlled device will accelerate and synchronise its INTERNAL LTC with the EXTERNAL TIMECODE. For a LOCK to be successful, synchronism must be achieved prior to the LOCK TIME.

Chapter 2

ATR type-specific messages (Virtual Machine type is 03h)

General notes

- 1. Commands which have a related information field for tally purposes ("... SELECT" -"... TALLY" pairs) are identified by a " >> " sign in the list below.
- 2. All Tape Motion State commands (indicated below as "TMS") are mutually exclusive.
- 3. Tape Motion Process commands (indicated below as "TMP are overriding control commands that cause the controlled device to enter automatically the appropriate Tape Motion States to achieve the desired result. The Tape Motion State will be reported in the TMS tally, as though that TMS command had been issued. TMPs are also mutually exclusive.
- 4. All Audio Record Commands (indicated below as "ARC ") affect the manner in which tracks are selected and subsequently sequenced through record Entries and Exits.
- 5. All Audio Monitor Commands (indicated below as " AMC ") affect the manner in which audio line output source selections are made.
- 6. In all cases, the temporal order of Events must be preserved. Commands actuated by the Event construct, if placed on the Event cue at the same trigger point, will execute preserving the temporal order of the delivery of the commands.
- All hex codes listed as "reserved " are specifically retained for possible future expansion of the range of common use between YTR and ATR dialects. In particular, it should be noted that this includes a number of commands concerned with presetting and operating a timecode generator which are already defined in the VTR dialect.

1. Index of keywords, mnemonics and information field names

1.1. Numerical index

Functio	on hex	/Message Keyword (mnemonic)		Information field name	(mnemonic)
	40h	not used		40h	not used	
TMS	41h	STOP	STOP	41h	INTERNAL LTC	INTC
TMS	42h	VARIABLE PLAY	VAPI,	42h	not used	
TMS	43h	PLAY	STPL	43h	SELECTED TAPE CODE	SETC
TMS	44h	STEP	STEP	44h	INTERNAL LTC USERBITS	INUB
TMS	45h	AUDIBLE FAST	AFST	45h	not used	
TMS	46h	SHUTTLE	SHUT	46h	TAPETIMER	TATI
	47h	not used		47h	not used	
	48h	reserved		48h	reserved	
	49h	CAPSTAN REF SELECT	CAPS	49h	CAPSTAN REF TALLY	CRET
ARC	4Ah	REHEARSE SELECT	REHS >>	4Ah	REHEARSE TALLY	REHT
ARC	4Bh	RECORD STROBE	RSTB	4Bh	CHANNEL RECORD STATU	S CRES
ARC	4Ch	RECORD EXIT	REEX	4Ch	not used	
	4Dh	TAPE CODE SELECT	TACS >>	4Dh	TAPE CODE SEL TALLY	TACT
TMP	4Eh	TARGET SEARCH	TASE	413h	SYNC VELOCITY	SYTY
TMP	4FH	SYNC PREROLL SEARCH	H SPRS	417h	PREROLL DURATION	PRDU
TMS	50h	SYNC	SYNC	50h	SYNC POINT	SPNT
TMS	51h	LOCK	LOCK	51h	LOCK TIME	LKIT
TMP	52h	LOCK PREROLL SEARC	H LPRS	52h	not used	
TMP	53h	CHASE	CHAS	53h	not used	
	54h	reserved		54h	reserved	
	55h	reserved		55h	reserved	
	56h	reserved		56h	reserved	
	57h	reserved		57h	reserved	
TMS	58h	TAPE RELEASE	TARL	58h	not used	
	59h	FIXED SPEET SELECT	FISS >>	59h	FIXED SPEED TALLY	FIST

tech	3245				EBU - Audio tape-recorder type-specif	ic message
	5Ah	not used		5Ah	TAPELENGTH	TLTH
	5Bh	not used		5Bh	not used	
	5Ch	not used		5Ch	SYNC/LOCK ACCURACY	SLAC
	5Dh	not used		5Dh	LOCK DEVIATION	UDE
	5Eh	not used		5Eh	not used	
	5Fh	not used		5Fh	not used	
	60h	PRESET	PRST	60h	TMP TALLY	TMPT
ſMS	61h	FAST FORWARD	FFOR	61h	TMS TALLY	TMST
ſMS	62h	FAST REVERSE	FREV	62h	VELOCITY TALLY	VELT
	63h	not used		63h	not used	
ARC	64h	RECORD READY SELECT	RECS >>>	64h	RECORD READY TALLY	RECT
	65h	not used		65h	not used	
	66h	AUTO ATTENUATE SEL	AUAS >>>	66h	AUTO ATTENUATE TALLY	AUAT
	67h	LIFTER DEFEAT SELECT	TLDS >>	67h	LIFTER DEFEAT TALLY	TLDT
	68h	not used		68h	reserved	
	69h	not used		69h	reserved	
	6Ah	not used		6Ah	reserved	
	6Bh	not used		6Bh	reserved	
	6Ch	not used		6Ch	reserved	
	6Dh	not used		6Dh	reserved	
	6Eh	not used		6Eh	reserved	
	6Fh	not used		6Fh	reserved	
	70h	LOCK MODE SELECT	LKMS >>>	70h	LOCK MODE TALLY	LKMT
AMC	71h	GLOBAL MONITOR SEL	MONS >>	·71h	GLOBAL MONITOR TALLY	MONT
AMC	72h	EXCLUSIVE SYNC SEL	ESYS >>	72h	EXCLUSIVE SYNC TALLY	ESYT
AMC	73h	SYNC INPUT SELECT	SYIS >>	73h	SYNC INPUT TALLY	SYIT
	74h	not used		74h	EXTERNAL TIMECODE	EXTC
	75h	not used		75h	EXTERNAL USERBITS	EXUB
	76h	not used		76h	SLEW RATE	SLRT
	77h	not used		77h	REQUESTED OFFSET	ROFT
	78h	not used		78h	ACTUAL OFFSET	AOFT
	79h	not used		79h	STRIDE LENGTH	STLT
	7Ah	LOCAL LOCKOUT SEL	LLOS	7Ah	LOCAL LOCKOUT TALLY	LLOT
	7Bh	not used		7Bh	TIMECODE ATTRIBUTE	TCAT
	7Ch	PLAY MODE SELECT	PLMS >>>	7Ch	PLAY MODE TALLY	PLMT

1.2. **Functional Index** Hex Message Keyword (mnemonic) information field name (mnemonic) System Utility 7Ah LOCAL LOCKOUT SEL LLOS 7Ah LOCAL LOCKOUT TALLY LLOT **Tape Motion Processes (TMP)** 413h TARGET SEARCH TASE ~ 4Fh SYNC PREROLL SEARCH SPRS 60h TMP TALLY TMPT 52h LOCK PREROLL SEARCH LPRS 53h CHASE CHAS **Tape Motion States (TMS)** 41h STOP STOP TMS TALLY 61h TMST 58h TAPE RELEASE TARL PLAY STPL 43h FAST FORWARD 61h FFOR 62h FAST REVERSE FREV STEP 44h STEP 62h VELOCITY TALLY VELT 42h VARIABLE PLAY VAPI 45h AUDIBLE FAST AFST 46h SHUTTLE SHUT 50h SYNC SYNC 51h LOCK LOCK **Tape Motion References** FIXED SPEED SELECT FISS >> 59h FIXED SPEED TALLY 59h FIST 49h CAPSTAN REF SELECT CAPS >> 49hCAPSTAN REF TALLY CRET PRESET 60h PRST 79h. STRIDE LENGTH STLT **Synchronization Parameters** LKMS >> 70h LOCK MODE TALLY LOCK MODE SELECT 70h LKMT 7Ch PLAY MODE SELECT PLMS >> 7Ch PLAY MODE TALLY PLMT

tech 3245				EBU - Audio tape-recorder type-specif	ic messages
			50h	SYNC POINT	SPNT
			51h	LOCK TIME	LKTT
			4Eh	SYNC VELOCITY	SVTY
			4Fh	PREROLL DURATION	PRDU
60h PRESE	Т	PRST	77h	REQUESTED OFFSET	ROFT
			5Ch	SYNC/LOCK ACCURACY	SLAC
			76h	SLEW RATE	SLRT
			78h	ACTUAL OFFSET	AOFT
			5Dh	LOCK DEVIATION	LKDE
Position an	d Synchronization Reference	ces			
4Dh	TAPE CODE SELECT	TACS >>	4Dh	TAPE CODE SELECT TALLY	TACT
60h	PRESET	PRST	46h**	TAPETIMER	TATI
			41h*	INTERNAL LTC	INTC
			43h*	SELECTED TAPE CODE	SETC
			74h*	EXTERNAL TIMECODE	EXTC
Position an	d Timecode Utilities				
60h	PRESET	PRST	5Ah	TAPELENOTH	TLTH
			7Bh	TIMECODE ATTRIBUTES	TCAT
			44h	INTERNAL LTC USERBITS	INUB
			75h	EXTERNAL USERBITS	EXUB
Audio Rec	ord Control (ARC)				
64h	RECORD READY SELECT	RECS >	> 64h	RECORD READY TALLY	RECT
4Ah	REHEARSE SELECT	REHS >	> 4Ał	n REHEARSE TALLY	REHT
4Bh	RECORD STROBE	RSTB	4Bh	CHANNEL REC STATUS	CRES
4Ch	RECORD EXIT	REEX			
Audio Mo r 71h	nitor Control (AMC) GLOBAL MONITOR SEL	MONS >>	>71h	GLOBAL MONITOR TALLY	MONT
72h	EXCLUSIVE SYNC SEL	ESYS >>>	72h	EXCLUSIVE SYNC TALLY	ESYT
73h	SYNC INPUT SELECT	SYIS >>	73h	SYNC INPUT TALLY	SYIT
66h	AUTO ATTENUATE SEL	AUAS >>	· 66h	AUTO ATTENUATE TALLY	AUAT

^{* -} Time I/Fs which may be used as Event triggers. **26**

2. **Keywords**

- 40h not used
- 41h STOP (TMS command)

Causes the controlled ATR to stop as soon as possible; all recording channels automatically exit from record operation prior to execution. Format: <STOP>

42h VARIABLE PLAY (TMS command)

> Causes the controlled ATR to enter capstan-controlled variable forward playback mode with specified velocity, relative to the FIXED SPEED. If the controlled ATR is recording, all recording channels will exit record mode.

<VARIABLE PLAY> Format: <

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<speed> 3-byte s</speed>		e signed binary number; 2's complement
scale:	000000h statio	onary
	010000h	FIXED SPEED, forward direction
	7F0000h	approximately 127 times FIXED SPEED, forward direction
	FF0000h	FIXED SPEED, reverse direction
	800000h	128 times FIXED SPEED, reverse direction

Note: The argument does not imply that the controlled device has equivalent resolution.

43h PLAY (TMS command)

Causes the controlled ATR to enter playback at the speed determined by the value in the FIXED SPEED I/F. If the controlled ATR is recording, all recording channels will exit record mode. Format: <PLAY>

44h STEP (TMS command)

Format:

Causes the controlled ATR to move the tape a specified number of STRIDE LENGTHs forward or backward, with respect to its current position, only while in STOP or STEP. Successive commands are cumulative until next TMS or TMP (other than STEP). The number argument refers to the quantity and direction of STRIDE LENGTHs of tape movement requested. The longitudinal STRIDE LENGTH is defined in the STRIDE LENGTH I/F

<STEP>

<NUMBER> 3-byte signed binary number; range: 127 to + 127

AUDIBLE FAST (TMS command) 45h

Causes the controlled ATR to enter fast tape motion giving an output of audible but not necessarily broadcastable audio, at specified direction and velocity relative to the FIXED SPEED. All recording channels automatically exit from record operation prior to execution. Format⁻

<AUDIBLE FAST>

<SPEED> 3-byte signed binary number;

same format as in VARIABLE PLAY command

46h SHUTTLE (TMS command)

Causes the controlled ATR to move the tape at the specified direction and velocity relative to FIXED SPEED, without necessarily giving audio playback. All recording channels automatically exit from record operation prior to execution.

Format: <SHUTTLE>

> <SPEED> 3-byte signed binary number; same format as in VARIABLE PLAY command.

- 47h not used
- 48h reserved

49h CAPSTAN REFERENCE SELECT

Causes the controlled ATR to select a capstan reference. This command is meaningful only when not in CHASE TMP, SYNC or LOCK TMS. These operations will cause a return to the default condition. Format: www.capstan.org www.capstan.org"/www.capstan.org"/

<MODE> 1-byte special binary code:

00h = internal crystal

01h = external capstan reference

FFh = as selected locdk

4Ah REHEARSE SELECT (ARC COMMAND)

During all subsequent record Entries and Exits, related output switching functions will mimic Record operation as defined by the SYNC-INPUT SELECT I/F without actually erasing or applying bias and audio signal to tape.

Format: <REHEARSE SELECT>

<MODE> 1-byte special binary code 00h = rehearse true 04h = rehearse true FFh = as selected locally all other codes record enabled

Note: Two hex codes are designated corresponding to Rehearse True in order to achieve conformity with the VTR type specific message RECORD MODE SELECT

4Bh RECORD STROBE

Causes record entry on the currently RECORD READY-enabled channel(s), causes record exit on any currently recording channels that have had RECORD READY enablement withdrawn. Format: <a href="https://www.ceencommunication-commu

4Ch RECORD EXIT

Causes a record exit on all currently recording channels. Format: <RECORD EXIT>

4Dh TAPE CODE SELECT

Selects the source of timecode for all succeeding messages that refer to the selected tape code. Format: <TAPE CODE SELECT>

<CODE TYPE> 1-byte special binary code:

00h = INTERNAL LTC (longitudinal timecode)

- 01h = reserved
- 02h = TAPETIMER
- 03h = reserved
- 04h = reserved
- FFh = as selected locally

4Eh TARGET SEARCH (TMP command)

Causes the controlled ATR to move the tape to a defined position in accordance with the selected tape code (selected by the command TAPE CODE SELECT).

Format: <TARGET SEARCH>

<TAPE CODE> (type TIME)

- 4Fh SYNC PREROLL SEARCH command)
 Cause the controlled ATR to move the tape to a position (reference the selected tapecode) determined by the PREROLL DURATION I/F minus any device-specific acceleration allowance in advance of the LOCK POINT I/F. All recording channels automatically exit from record operation prior to execution.
 Format: SYNC PREROLL SEARCH>
- 50h SYNC (TMS command)

Causes the controlled device immediately to establish synchronism with the selected timeline source at the prescribed SYNC POINT with the prescribed SYNC VELOCITY, and after the prescribed PREROLL DURATION period.

- Notes: 1. This command is styled to conform functionally to the VTR dialect SYNC command.
 - 2. PREROLL DURATION I/F and SYNC POINT I/F must be predefined before both SYNC PREROLL SEARCH and SYNC command execution. The controlled device must be cued to the correct preroll position before execution of the SYNC command.
 - 3. This command establishes synchronism independently of any previously preset REQUESTED OFFSET, because the offset at the instant of SYNC POINT is dependent upon the time of the command's delivery and the prescribed SYNC VELOCITY. As a function of SYNC operation, REQUESTED OFFSET may be changed in order to maintain SYNC VELOCITY relative to the selected timeline source.

Format: < SYNC >

51h LOCK (TMS command)

Causes the controlled ATR to establish synchronism in the manner defined by the LOCK MODE I/F and causes a LOCK PREROLL SEARCH operation should the controlled device not be cued to the correct preroll position.

Format: <LOCK>

Note: PREROLL, DURATION, REQUESTED OFFSET and LOCK TIME IIF must be predefined be_fore LOCK tion.

52h LOCK PREROLL SEARCH (TMP command)

Causes the controlled ATR to move the tape to a position (reference the selected tapecode) determined by the PREROLL DURATION I/F minus any device-specific acceleration allowance in advance of the LOCK TIME I/F as adjusted by the REQUESTED OFFSET. All recording channels automatically exit from record operation prior to execution. Format: CAUSE AND CONTROL AND C

53h CHASE (TMP command)

Causes the controlled device to attempt to follow, establish and maintain synchronism with the external timecode in a data-dependent manner. All recording channels automatically exit from record operation prior to any " follow " action which is independent of the capstan servo. Format: CHASE>

- 54h reserved
- 55h reserved
- 56h reserved
- 57h reserved

58h TAPE RELEASE (TMS command)

Releases the tape tension mechanism of the controlled ATR. All recording Channels exit from record operation prior to exectition. 71m TMS is reset by STOP.

Format: <TAPE RELEASE>

59h FIXED SPEED SELECT Causes the controlled device to select the nominal tape speed.

Format:	<fixed select="" speed=""></fixed>		
	<speed></speed>	1-byte special binary code:	

10h = 1.875 inch/s =	4.7625 cm/s
20h = 3.750 inch/s =	9.525 cm/s
30h = 7.500 inch/s =	19.05 cm/5
37h = 9.606 inch/s =	24.40 cm/s
40h = 15.00 inch/s =	38.10 СМ/8
50h = 30.00 inch/s =	76.20 cm/s
FFh = as selected locally	

- 5Bh not used
- 5Ch not used
- 5Dh not used
- 5Eh not used
- 5Fli not used

The following command is used to preset items whose contents are represented in an information field:

60h PRESET

Presets the named information field to the given value.

Format: <PRESET> <PERMITTED INFORMATION FIELD NAME> <VALUE> format and coding defined by the I/F NAME (see section 3: Information Fields)

Permitted information field names for ATRs are:

TAPETIMER SYNC VELOCITY PREROLL DURATION SYNC POINT LOCK TD4E TAPELENGTH SYNC/LOCK ACCURACY STRIDE LENGTH SLEW RATE REQUESTED OFFSET

61h	Causes the co		run forward at i s automatically e	ts maximum speed without necessarily giving audio xit from record operation prior to execution.
62h	Causes the co		wind at its maxir cally exit from re	num speed without necessarily giving audio playback. cord operation prior to execution.
63h	not used			
64h	Controls which of a RECORI	D STROBE comm	be record-enable and. A channel	d. These enabled channels enter record upon receipt that has had its enablement withdrawn by RECORD receipt of a RECORD STROBE or RECORD EXIT
	Format:	<record rea<br=""><channels></channels></record>	8-byte bitmap:	audio channels 1-64 record ready true

Note: Bits 0-7 form the least significant byte; this byte is transmitted last.

- 65h not used
- 66h AUTO ATTENUATE SELECT (AMC command) Causes the audio outPuts of the controlled ATR to be attenuated.

Note: Any channels locally-defined for carrying timecode may be excluded from. this function.

Format: <AUTO ATTENUATE> <MODE> 1-byte special binary code: 00h = OFF 01h = ON FFh = as selected locally

67h LIFTER DEFEAT SELECT (AMC command)

Defeats the tape lifter mechanism of the controlled ATR, thus allowing full tape contact with the heads at all times.

Format: $\langle LIFTER DEFEAT SELECT \rangle$ $\langle MODE \rangle$ 1-byte special binary code: 00h = OFF01h = ONFFh = as selected locally

- 68h not used
- 69h not used
- 6Ah not used,
- 6Bh not used

6Ch not used

- 6Dh not used
- 6Eh not used
- 6Fb, not used
- 70h LOCK MODE SELECT

Selects the manner in which the controlled device achieves, and maintains synchronization, as commanded by the LOCK command.

Format: <LOCK MODE SELECT> <MODE> 1-byte special binary codi

00h Absolute Standard Mode:

Achievement of lock to EXTERNAL TIMECODE is data-dependent; maintenance of lock is data-dependent. External LTC is selected as the source of EXTERNAL TIMECODE.

0.1h Absolute Resolve Mode:

Achievement of lock to EXTERNAL TIMECODE is data-dependent; maintenance of lock is data-independent. External LTC is selected as the source of EXTERNAL TIMECODE.

02h Absolute Video Mode:

Achievement of lock to EXTERNAL TIMECODE is data-dependent; maintenance of lock is by reference to external video. External LTC is selected as the source of EXTERNAL TIMECODE.

03h Absolute VITC Mode:

Achievement of lock to external video with VITC is data-dependent; maintenance of lock is by reference to external video. The external video VITC signal is selected as the source of EXTERNAL TIMECODE.

11h Free Resolve Mode:

Achievement of lock to EXTERNAL TIMECODE is data-independent; maintenance of lock is data-independent. External LTC is selected as the source of EXTERNAL TIMECODE.

12h Free Video Mode:

Achievement of lock is by reference to external video signal; maintenance of lock is by reference to external video. The source of EXTERNAL TIMECODE is undefined. *FFh As selected locally*

Notes: 1. All LOCK commands ~ in any Absolute Mode require predefined PREROLL DURATION, REQUESTED OFFSET, and LOCK TIME I/Fs, and must be preceded by a LOCK PREROLL SEARCH command.

- 2. All LOCK commands issued in any Free Mode ignore any predefined PREROLL DURATION, REQUESTED OFFSET, and LOCK TIME I/Fs, and need not be preceded by a LOCK PREROLL SEARCH command.
- 3. If a change in lock mode from any Free Mode to the Absolute Mode is performed following a successful LOCK operation, then the ACTUAL OFFSET I/F data is automatically transferred to the REQUESTED OFFSET I/F. LOCK is maintained.
- 4. Smooth operation in Absolute Video Mode is assured only if the EXTERNAL TIMECODE is framed correctly with respect to the video reference signal, i.e. the leading edge of bit zero must begin at the start of the appropriate line of the video.

71h GLOBAL MONITOR SELECT (AMC command)

Controls which of the listed signals is selected for the output of all audio channels. Format. <<u>GLOBAL MONITOR SELECT></u> (MODE) 1 byte special binery code:

- <MODE> 1-byte special binary code:
 - 01h = Playback 02h = Synchronous Playback 03h = Input FFh = As selected locally

72h EXCLUSIVE SYNC SELECT (AMC command)

Controls which, if any, audio channels will, notwithstanding any GLOBAL MONITOR SELECTion, provide synchronous playback on Line Output, in accordance with the SYNC INPUT I/F.

Format:	<exclusive syn<="" th=""><th>C SELECT></th></exclusive>	C SELECT>
	<channels></channels>	8-byte bit map:

Bits 0-63 = Audio channels 1-64

Note: Bits 0-7 form the least significant byte; this byte is transmitted last.

73h SYNC INPUT SELibf~(iAMC- command)

Selects the conditions under which Line Input is presented to Line Output, for those channels selected for Synchronous Playback. This function affects all audio channels, except for the designated timecode channel.

Format:	<sync input="" select=""></sync>	
	<mode></mode>	1-byte special binary code:
		00h = Record Only
		01h = Record or Non-Play
		02h = Record or Record-Ready
		FFh = As selected locally

Notes: 1. "Record Only

All channels that are set to monitor Synchronous Playback will monitor input only when recording. Upon the conclusion of a record operation, those channels will revert back of Synchronous Play.

- "Record or Non-play l.: All channels that are set to monitor Synchronous Playback will monitor input when recording. Upon the conclusion of a record operation, those channels will revert back to Synchronous Playback. In addition, all Record Ready channels will monitor Input when not in PLAY mode.
 -Record or Record-Ready ":
- 3. -Record or Record-Ready ": All channels that are set to monitor Synchronous Playback, and are set to Record Ready (or are still recording), will monitor Input.
- 74h not used
- 75h not used
- 76h not used
- 77h not used
- 78h not used
- 79h not used

7Ah	LOCAL LOCKOUT SELECT Causes the controlled device to disable all local controls.			
	Format:	<local lockout="" select=""> <mode> 1-byte special binary code:</mode></local>		
		logic:	00h = local control not disabled 01h = local control disabled	
7Bh	not used			
7Ch	operation, as dir Format:	SELECT' anner in which the controlled device establishes its nominal, FIXED SPEED forward directed by the PLAY command. <play mode="" select=""> <mode> 1-byte special binary code: 00h Normal: Achieve PLAY as defined by the CAPSTAN REFERENCE SELECT. No relationship is implied to any timecode or video reference. 11h Free Resolve Mode:</mode></play>		
		Achieve PLAY in a manner that resolves to EXTERNAL TIMIECODE data-independent; maintain resolve data-independent. External LTC is selected as the source of EXTERNAL TIMECODE. <i>12h Free Video Mode:</i>		
	Achieve PLAY in a manner that resolves to external video signal; maintain resolve to external video reference. The source of EXTERNAL TIMECODE is undefined.			

FFh As selected locally

3. Information Fields

Note: The items of the INFORMATION FIELD are accessed by the common messages: READ, UPDATE, CYCLE or SIMULTANEOUS READ, which are tallied by the common messages:

I/F ITEM RESPONSE or SIMULTANEOUS READ RESPONSE These commands use the format <KEYWORD> <PARAMETER NAME> and <KEYWORD> <PARAMETER NAME> <PARAMETER VALVE> where PARAMETER NAME uses the information field name specified below, and PARAMETER VALUE carries the information contents specified below. 40h not used 41h INTERNAL LTC This contains the longitudinal timecode value most recently read from tape. Format: <INTERNAL LTC > <CODE VALIDITY> 1-byte special binary code: 00h = valid LTC01h = derived LTC02h = non valid LTC<TIME VALUE> standard "time" format 43h SELECTED TAPE CODE Contains the time value of the timecode (INTERNAL LTC, TAPETIMER, etc.) that has been selected most recently by the TAPE CODE SELECT command. <SELECTED TAPE CODE> Format: <IDENTIFIER> 1-byte special binary code: 00h = INTERNAL LTC 01h = reserved02h = TAPETIMER03h = reservedFFh = invalid<TIME VALUE> standard " time " format INTERNAL LTC USERBITS 44h Contains the LTC userbit contents most recently read from tape. Format: <INTERNAL LTC USERBITS>. <UB SPECIFICATION> 1-byte special code: bits 0.1: 0,0 Content of userbits unspecified 1,0 Content of userbits is eight-bit character set conforming to ISO 646 and ISO 2022 (ASCII) 0,1 Unassigned 1,1 Unassigned bit 2: 0 Unassigned Content of userbits is secondary time data in 1 standard time format bit 3-7: 0 Set to 0 until assigned <UB GROUP 8/IUB GROUP 7> <UB GROUP 6/UB GROUP 5> 4 bytes, each consisting of two 4-bit <UB GROUP 4/UB GROUP 3> nibbles, each containing one UB group <UB GROUP 2/UB GROUP 1 > (MSnibble) Note: UB 1 is the UB group which occurs first on tape (transmitted last in this format).

45h not used

46h TAPETIMER Contains the instantaneous counting status of tapetimer. Format: <TAPETIMER>

modified standard "time" format: MSB (i.e. 80h position of "hours" byte) = sign

Note: tapetimer count through zero technique must be as follows: $-4 - 3 - 2 - 1 - 0 + 0 + 1 + 2 + 3 + 4 \dots$

- 47h not used
- 48h reserved
- 49h
 CAPSTAN REFERENCE TALLY

 Tallies the status set by the CAPSTAN REFERENCE SELECT command.

 Format:
 <CAPSTAN REFERENCE TALLY>

 <MODE>
 1-byte special binary code

00h = internal crystal (= default) 01h = external ref input

- 4Ah
 REHEARSE TALLY

 Tallies the status set by the REHEARSE SELECT command.

 Format:
 <REHEARSE TALLY>

 <MODE>
 1-byte special binary code:

 01h = rehearse true (= default)

 04h = rehearse true

 05h = record enabled
- 4Bh
 CHANNEL RECORD STATUS

 Contains a 64-bit map of the channels that are currently recording.

 Format:
 <CHANNEL RECORD STATUS>

 <CHANNELS>
 8-byte bit map:

Bits 0-63 = audio channels 1-64

Note: Bits 0-7 form the least significant byte; this byte is transmitted last.

- 4Ch not used
- 4Dh
 TAPE CODE SELECTION TALLY

 Tallies the code currently selected by the most recent TAPE CODE SELECT command.

 Format:
 <TAPE CODE SELECTION TALLY>

 <CODE TYPE> 1-byte special binary code:

00h = INTERNAL LTC (= default) 01h = reserved 02h = TAPETIMER 03h = reserved 04h = reserved

4Eh SYNC VELOCITY

Contains a velocity used as the synchronization velocity for the SYNC command. Format: <SYNC VELOCITY> < SPEED >

 3-byte signed binary number; same format as in VARIABLE PLAY command.
 Default is FIXED SPEED forward.

4Fh PREROLL DURATION

Contains the desired real-time preroll duration used in advance of the synchronising process.

For use with the LOCK command, the PREROLL DURATION specifies the exact real-time period between Lock Actuation Time, and the moment of encountering the LOCK POINT (see Chapter 1 for concept). It is assumed that EXTERNAL TIMECODE is presented to the device in a real-time manner during the PREROLL period. PREROLL DURATION may not be set to a value lower than the device-dependent lower limit.

For use with the SYNC command, the PREROLL DURATION specifies the exact real-time period between the receipt of the SYNC <u>command</u>, and the moment of synchronizing with the SYNC/LOCK POINT at the SYNC VELOCITY. It is assumed that the selected TIMELINE SOURCE is presented to the device in a real-time manner during this preroll period. PREROLL DURATION may not be set to a value lower than the device-dependent lower limit, which may change dependent upon prescribed SYNC VELOCITY and other factors.

Format:	<preroll duration=""></preroll>		
	<time value=""></time>	standard "time" format	

50h SYNC POINT

51h LOCK TIME

Contains the last specified point in time, by reference to EXTERNAL TIMECODE, at which synchronism to the INTERNAL LTC is assured. The manner in which the device Maintains synchronous operation from this point on is defined by the LOCK MODE SELECT I/F.

Format:

<LOCK TIME> <TIME VALUE> standard "time" format

- 52h not used
- 53h not used
- 54h reserved
- 55h reserved
- 56h reserved
- 57h reserved
- 58h not used

59h	FIXED SPEED TALLY Tallies the current play speed.						
	Format:	<fixed speed="" tally=""> <speed> 1-byte special binary code:</speed></fixed>					
		10h = $1.875 inch/s =$ $4.7625 cm/5$ $20h =$ $3.750 inch/s =$ $9.525 cm/s$ $30h =$ $7.500 inch/s =$ $19.05 cm/s$ $37h =$ $9.606 inch/s =$ $24.40 cm/s$ $40h =$ $15.00 inch/s =$ $38.10 cm/s$ $50h =$ $30.00 inch/s =$ $76.20 cm/s$					
5Ah	TAPELENGTH Contains the leng	th of the loaded tape.					
	Format:	<tapelength> <time value=""> standard time format</time></tapelength>					
5Bh	not used						
5Ch	SYNC/LOCK ACCURACY Contains a time value that determines the accuracy of synchronizing processes, i.e. it specifies the maximum allowed error before negation of the LOCK or SYNC successful tallies (see TMS TALLY I/F).						
	Format:	<sync accuracy="" lock=""> <ltc bit="" periods=""> 1-byte unsigned number</ltc></sync>					
	Argument range						
	25	 less than 1/80 frame period less than 255/80 frame periods 					
5Dh	LOCK DEVIATION Contains the time difference between the position of the tape on the controlled ATR and the external timecode adjusted by the REQUESTED OFFSET.						
	This is computed as follows:						
	INTERNAL LTC minus REQUESTED OFFSET minus EXTERNAL TIMECODE						
	Format:	<lock deviation=""> <time value=""> high resolution time format</time></lock>					
5Eh	not used						
5Fh,	not used						
60h	TMP TALLY Tallies the curren has been accompl	t Transport Motion Process of the ATR, and reports how successfully that process lished.					

has been accomplished.

<TMP TALLY> Format <KEYWORD> 1 value that contains the keyword of the last active TMP command. <SUCCESS LEVEL> 1-byte special binary code: 00h =trying; transition in progress 01h = successful02h = failure; this tally should be supplemented by an ERROR message as appropriate TMS TALLY Tallies the current Transport Motion State of the ATR, and reports how successfully this state has been reached. Format[.] <TMS TALLY>

<keyword></keyword>	1 -byte value that contains the keyword of the last active		
	TMS c	command.	
SUCCESS LEVEL>	>	1-byte special binary code:	
	00h =	trying; transition in progress	
	01h =	successful	
	02h =	failure; this tally should be supplemented by an	

ERROR message as appropriate

62h VELOCITY TALLY

 Tallies the current transport velocity. Note that this is the true velocity in all modes.

 Format:
 <VELOCITY TALLY>

 <SPEED>
 3-byte signed binary number; same format as in VARIABLE PLAY command.

63h not used

61h

64h RECORD READY TALLY Contains a 64-bit map of the channels that are ready to record. Format: RECORD READY TALLY> < RECORD READY TALLY>

< CHANNELS>

8-byte bit map:

Bits 0-63: audio channels 1-64

Note: Bits 0-7 form the least significant byte; this byte is transmitted last.

65h not used

66h AUTO ATTENUATE TALLY (AMC TALLY)

Tallies the status of the auto attenuate function selected by the AUTO ATTENUATE SELECT command.

Format:

<AUTO ATTENUATE TALLY> <MODE> 1-byte special binary code: 00h = OFF (= default) 01h = ON

67h LIFTER DEFEAT TALLY (AMC tally) Tallies the status selected by the LIFTER DEFEAT SELECT command. Format: <LIFTER DEFEAT TALLY> <MODE> 1-byte special binary code: 00h = OFF (= default) 01h = ON

- 68h reserved
- 69h reserved
- 6Ah reserved
- 6Bh reserved
- 6Ch reserved
- 6Dh res~
- 6Eh reserved
- 6Flh reserved

Format:

70h LOCK MODE TALLY Tallies the mode in which synchronism is established and maintained. Format: <LOCK MODE TALLY> <MODE> 1-byte special b~ code:

Absolute Standard Mode
Absolute Resolve Mode
Absolute Video Mode
Absolute VITC Mode
Free Resolve Mode
Free Video Mode

71h GLOBAL MONITOR TALLY (AMC tally))

Tallies the status of the monitor channels selected by the GLOBAL MONITOR SELECT command.

<global mo<="" th=""><th colspan="5"><global monitor="" tally=""></global></th></global>	<global monitor="" tally=""></global>				
<mode></mode>	1-byte special binary code:				
	01h = Playback (= default)				
	02h = Synchronous Playback				
	03h = Input.				

72h EXCLUSIVE SYNC TALLY (AMC tally) Tallies the status of the audio channels defined by the EXCLUSIVE SYNC SELECT command. Format: << EXCLUSIVE SYNC TALLY> << CHANNELS> 8-byte bit map:

Bits 0-63 = Audio channels 1-64

Note: Bits 0-7 form the least significant byte; this byte is transmitted last.

73h SYNC INPUT TALLY (AMC tally) Tallies the conditions selected by the SYNC INPUT SELECT command. Format: <SYNC INPUT TALLY> <MODE> 1-byte special binary code: 00h Record (= default) 01h Record or Non-Play

02h = Record or Rec-Ready

74h EXTERNAL TIMECODE Contains the timecode value most recently received from an external timecode source. Format: <EXTERNAL TIMECODE> <CODE VALIDITY> 1-byte special binary code: 00h - valid timecode 01h - not valid timecode <TIME VALUE> standard "time" format 75h EXTERNAL USERBITS Contains the userbit contents most recently received from an external timecode source. Format[.] <USERBITS> <UB SPECIFICATION> (format as <UB GROUP 8/UB GROUP 7> INTERNAL LTC USERBITS) <UB GROUP 6/UB GROUP 5> <UB GROUP 4/UB GROUP 3> <UB GROUP 2/UB GROUP 1> 76h SLEW RATE Contains the maximum rate at which the position of the tape on the controlled machine may be changed during an attempt to re-establish synchronism following a loss of synchronism. Format: <SLEW RATE> 2-byte unsigned binary number $\langle RATE \rangle$ scale. 0000h =no slew 0001h =1/10 frame/sec maximum machine-dependent slew rate FFFFh = 77h **REQUESTED OFFSET** Contains the desired time offset between the external timecode and the internal tape timecode for use with LOCK and CHASE commands. Format: <REQUESTED OFFSET> <OFFSET TIME> high-resolution timecode definition: offset = internal timecode minus external timecode e.g.: If the controlled device is to lead the external reference by 1 minute, then <OFFSET TIME> = <00 01 00 00.00 00> 78h ACTUAL OFFSET Contains the actual time offset between the external timecode and the internal tape timecode. Format: <ACTUAL OFFSET>

<OFFSET TIME> high-resolution timecode

definition: offset = internal timecode minus external tim~e e.g.: If the controlled device leads the external reference by 1 minute, then <OFFSET TIME> = <00 01 00 00.00 00>

79h STRIDE LENGTH

Contains the period of each unit, in terms of LTC bits, for the STEP TMS argument.

Format:	<stride length=""></stride>	
	<number bits="" ltc=""></number>	1-byte unsigned binary number

7Ah	LOCAL LOCKOUT TALLY
	Tallies the status of the local control capability of the controlled device.

Format:	<local loc<="" th=""><th colspan="4"><local lockout="" tally=""></local></th></local>	<local lockout="" tally=""></local>			
	<mode></mode>	1-byte q~ binary code:			
	logic:	00h = local control not disabled			
		01h = local control disabled			

7Bh TIMECODE ATTRIBUTE

Contains the attributes of the timecodes presented to the controlled device.

Format:	<timecode attr<="" th=""><th>LIBUTE></th><th></th></timecode>	LIBUTE>	
	<attribute of="" t<="" td=""><td>APE TIMECODE></td><td>1-byte special binary code</td></attribute>	APE TIMECODE>	1-byte special binary code
	<attribute e<="" of="" td=""><td>XTERNAL TIMECODE></td><td>1-byte special binary code</td></attribute>	XTERNAL TIMECODE>	1-byte special binary code
	coding (both cases):	00h = 24-frame-count code	e
		01h = 25-frame-count code	e
		02h = 30-frame-count code	e
		12h = 30-frame-count cod	e, compensated

7Ch PLAY MODE TALLY

Tallies the manner in which the controlled device is selected to establish its nominal, FIXED SPEED forward operation, as directed by the PLAY command.

Format:	<play mode="" tally=""></play>		
	<mode></mode>	1-byte special binary code:	

00h = normal (= default) 11h = Free Resolve Mode 12h = Free Video Mode

Reproduction, even in part, of this publication is forbidden except with the prior, written authority of the Publisher

Editeur responsable : G.T. Waters, Anclenne Route 17 A, CH1218 Grand-Seconnex/Genève, Suisse

REMOTE-CONTROL SYSTEM FOR BROADCASTING PRODUCTION EQUIPMENT TELECINE TYPE-SPECIFIC MESSAGES

Tech. 3245 - Supplement 4

December 1989

CONTENTS

Introduction	.3
Chapter 1 - General concepts	.5
1. Transport Motion States	.6
2. Transport Motion Processes	.6
3. Electrical machine states	.7
4. Transport speeds	.7
5. TK Information Fields	
5.1. TMS tallies	
5.2. TMP tallies5.3. Other command tallies	
5.4. Film Code	
6. Synchronization	
 Timediate and Timeline Modes	
8. Sample command sequences	
8.1. Immediate Mode8.2. Timeline Mode	
9. Analogue magnitudes	
9.1. Information Fields related to analogue magnitudes9.2. TRANSITION commands	
9.2. TRANSITION commands9.3. The CHANGE I/F command	
9.4. The NORMALIZE I/F command	
9.5. The AUTO CONTROL I/F command	
9.6. Multiple I/F operation	
Chapter 2 - Telecine (TK) type-specific messages	17
1. Index of keywords, mnemonics and information field names	
2. Keywords	
3. Information fields	94

Introduction

Document Tech. 3245 describes the specification of a digital remote-control system for broadcasting production equipment. It defines completely the electrical/mechanical level (level 1), and the supervisory level (level 2), of the interface. The two remaining levels - the system service level (level 3), and the virtual machine level (level 4) - are defined only in terms of function and control message syntax.

Supplement 1 to Tech. 3245 completes the definition of the system service level by detailing the system service messages and, in addition, defines the virtual machine messages which are common to all types of virtual machine - the common messages.

The present Supplement defines the type-specific virtual machine messages which are applicable to telecines. Type-specific messages applicable to other categories of equipment are defined in other supplements to Tech. 3245.

In order to implement a complete network, the system designer therefore requires:

Document Tech. 3245 - the general specification,

Supplement 1 - system service and common messages and one or more other supplements appropriate to the category or categories of equipment to be used.

The specification described in this Supplement has been developed jointly with the SMPTE, and is functionally identical to that to be published as an SMPTE Recommended Practice.

Chapter 1

General concepts

This chapter contains a general explanation of some of the concepts used in the formulation of the TK type-specific message set. It constitutes tutorial information and is intended to assist in the understanding of the specifications in Chapter 2 of this document. A working knowledge of the following ESbus topics is assumed:

ESbus system overview Control message architecture

Supervisory protocol

Tributary interconnection

Electrical and mechanical characteristics

System service and common messages

The TK type-specific dialect shares many conceptual constructs with the VTR type-specific dialect. As far as possible comparable functions of both machine types are controlled with commands of the same code and format; there are, however, also some differences.

In respect of the control of analogue functions in particular, the message set and the Information Field array of the telecine are much more developed than those of the VTR.

Conventions:

- Acronyms and abbreviations are shown in upper-case characters.

e.g. Telecine TK Transport Motion State TMS Information Field I/F

- Message keywords and names of information fields are shown in upper-case characters.

e.g. FIXED PLAY

PREROLL DURATION

These command keywords and information field names are used within the text of this document to imply requested action, information field identity, and in turn the information field contents of the virtual machine. To assist in readability of this document, these terms are used in the context of the presentation material.

e.g. "If the SYNC VELOCITY is standard play speed ("SYNC VELOCITY" in this context refers to the content of an Information Field.)

- Terms having special meanings in this or related documents are shown with leading upper-case characters :

e.g. Virtual Machine Transport Motion Process

I. Transport Motion States

The transport mechanism of a TK is considered as a separate state machine. Therefore the commands which control transport functions form a subset within the TK type-specific message set. These commands are called Transport Motion State commands ("TMS" commands). Each TMS command causes a transition into a transport state and ceases the previous state, i.e. these functions are mutually exclusive.

TMS commands include:

STOP, VARIABLE PLAY, FIXED PLAY, STEP, VISIBLE FAST, SHUTTLE.

All TMS commands are marked as such in the command description.

2. Transport Motion Processes

Transport Motion Process commands (" TMP " commands) are overriding control commands that cause the controlled device automatically to choose it's own Transport Motion States to achieve the desired result.

TMPs include:

TARGET SEARCH, PREROLL SEARCH, SYNC.

All TMP commands are marked as such in the command description.

3. Electrical machine states

Other TK commands affect states of the electrical environment of the TK. The functions controlled by them are not necessarily mutually exclusive.

4. Transport speeds

Some commands require a speed specification which is carried by the command in the form of a three-byte parameter. This parameter is intended to define the direction and absolute value of the desired speed that should be achieved as closely as possible by the real machine.

All commands with a speed parameter use the same format and coding. This is a three-byte signed number with a scale range defined such that:

000000h	represents	stationary ^{*1} ,
010000h	represents	FIXED SPEED, forward direction,
7F0000h	represents	approximately 127 times FIXED SPEED, forward direction,
FF0000h	represents	FIXED SPEED, reverse direction,
800000h	represents	128 times FIXED SPEED, reverse direction.

It allows, theoretically, for speeds between - 128 and approximately + 127 times FIXED SPEED and a resolution of 1/65,536th of FIXED SPEED.

5. TK Information Fields

The TK dialect makes extensive use of the Information Field concept. Some specific features of the TK Information Fields are described in the following sections.

¹ the letter "h" appended to a number indicates that it is expressed in hexadecimal notation.

5.1. TMS tallies

These Information Fields indicate the current state of the transport. As these mutually exclusive states are commanded by TMS commands, the code of the corresponding TMS keyword is used to identity them individually. An additional byte tallies the level of success, i.e. whether the commanded state function is still in transition or has been achieved, successfully or not.

5.2. TMP tallies

These Information Fields indicate the current Transport Motion Processes. As these mutually exclusive processes are commanded by TMP commands, the code of the corresponding TMP keyword is used to identify them individually. An additional byte tallies the level of success, i.e. whether the commanded process is still in progress, or has already accomplished its respective goal, successfully or not.

During processes, the Transport Motion State will be reflected in the TMS TALLY I/F, as though that TMS command had been issued.

5.3. Other command tallies

Commands which cause changes in any electrical machine state (non-TMSs) have a corresponding Information Field. When the Information Field is read, the response is tallied in the same format as that of the command.

Example: The command ASPECT SELECT is intended to choose the aspect ratio of the reproduced picture. The Information Field ASPECT TALLY may be read to obtain information about the currently selected aspect ratio, which will be tallied in the same format as that used in the ASPECT SELECT command itself.

5.4. Film Code

There are several ways to identify a film position, by using for example:

- film time-code.
- frame counter 1,
- frame counter 2.

For a search, and for other automatic procedures, only one scale is used. The selected scale is referred to as the FILM CODE, and can be chosen by the FILM CODE SELECT command. The functions mentioned above then refer to the FILM CODE rather than to a frame counter directly.

There is a separate Information Field for each of the codes and timers mentioned above; nonetheless, the film code actually selected can also be read from the Information Field FILM CODE.

6. Synchronization

Synchronization means that the machine is programmed to pass:

- a specified point on the film ("where")
- at a specified point in time ("when"), and
- locked to a specified speed ("how").
- "Where" : The point on the film is called SYNC POINT. It is specified in terms of FILM CODE, and is maintained in the Information Field SYNC POINT. The sync point is specified by applying a PRESET command to this Information Field.
- "When": The point in time is defined by the instant of issue of the SYNC command. At a specified time period after the arrival of the SYNC command, the SYNC POINT must be reached. This time period is called PREROLL DURATION; it is maintained in the Information Field PREROLL DURATION, and is specified by applying a PRESET command to this Information Field.

Note: the PREROLL DURATION is reserved mainly for synchronization purposes; a greater PREROLL DURATION than that required by the real machine may, however, be chosen for operational reasons (e.g. extended preview time).

"How": The speed at the sync point is defirted by a value maintained in the Information Field SYNC VELOCITY; it is specified by applying a PRESET command to this Information Field.

As a prerequisite for the use of the SYNC command the film must be placed at a park position which is calculated from the SYNC POINT and the SYNC VELOCITY as follows:

SYNC POINT - <u>PREROLL DURATION x SYNC VELOCITY</u> FIXEDSPEED

To achieve this park position the PREROLL SEARCH command is used and the TK virtual machine must make the calculation automatically.

The SYNC Command in the case of an "Ideal" Machine

A better understanding of the function of the SYNC command is possible if it is considered from the viewpoint *of an " ideal " machine.

- On the arrival of a SYNC command an ideal TK would start immediately with no delay, fully locked and with the specified speed. Under these ideal conditions the machine would, at the PREROLL DURATION time later, be precisely at the SYNC POINT.
- A real TK cannot start and synchronize immediately; it is therefore the responsability of the virtual machine, and hence of the virtual machine manufacturer, to control the real machine in such a manner that the result is the same.

Measures taken in order to correct synchronization during the preroll duration period may include:

- on the receipt of a PREROLL SEARCH command, parking a few frames down the film to match the average number of frames lost while coming up to play speed;

- on the SYNC command, overriding the specified velocity using the play speed override facility of the real machine to eliminate the remaining offset from the appropriate lock condition.

7. Immediate and Timeline Modes

All TK commands can be used in the "immediate mode" which causes their instantaneous execution. In this way they could, theoretically, be used to control even time-critical functions. As the transfer of a message over the bus within a given time slot cannot be guaranteed, however, the immediate mode is not recommended for such applications.

Wherever possible, time-critical commands should be queued on the timeline, using the command facilities provided by the common message set. Activities requiring synchronous operations between several machines are best suited to the " timeline mode " of operation which allows for the pre-programming of sequences of time-critical functions (e.g. SYNC command). All time-critical functions refer to the timelines of the individual virtual machines, which themselves are synchronized by a system time transmission from the bus controller in response to a REQUEST TIME TRANSMISSION command.

For certain time-critical applications, (e.g. editing), it is essential that all machine internal clocks are synchronized to the station field phase sequence. In order to achieve this phasing, the machine internal clock will be ADVANCED by as many frames as necessary following receipt of the TIMELINE RUN command.

8. Sample command sequences

The following sections show samples of typical command sequences in immediate mode as well as in timeline mode. These sequences describe only some of the applications of the command set; there is no obligation on the part of system designers to use precisely these sequences.

8.1. Immediate Mode

8.1.1. Search and Play

Some time before initial action:

<PRESET> <PREROLL DURATION> < time value >

<PRESET> < SYNC POINT > < time value >

initial action:

<PREROLL SCHEARCH>

final action (not earlier than when the TMC TALLY has been "SEARCHed, successfully"):

<FIXED PLAY>

On the FIXED PLAY command the TK starts and reaches the sync point approximately after the preroll duration.

If the TK is required to start at the sync point location (using no preroll) the TARGET SEARCH command should be used.

synchronzation is not then guaranteed.

Note that the preroll duration and the sync point, once loaded, need not be reloaded until changed.

8.1.2. Search and Synchronbs

Some time before initial action:

<PRESET> <PREROLL DURATION> < time value >

<PRESET> <SYNC POINT> < time value>

<PRESET> <SYNC VELOCITY> <speed value>

initial action:

<PREROLL SEARCH>

final action (not earlier than when the TMC TALLY has been SEARCHed successfully):

<SYNC>

On the SYNC command the TK starts and reaches the sync point precisely after the preroll duration.

Under control of the virtual machine the play speed override function of the TK may be used internally to find the appropriate lock.

This sequence can be used for the synchronous operation of multiple TKs only when delivery of the SYNC command can be guaranteed within a reasonable time slot (e.g. one field).

Note that the preroll duration, once loaded, need not be reloaded until changed.

8.2. Timeline Mode

8.2.1. Search and Play

Some time before initial action:

<PRESET> <PREROLL DURATION> <time value>

<CLEAR EVENT> <0>

<STOP TIMIELINE> (optional),

<PRESET> <SYNC POINT> <time value>

<PRESET> <SYNC VELOCITY> < speed value>

initial action:

<PREROLL SEARCH>

final action (not earlier than when the TMC TALLY has been SEARCHed, successfully

<REQUEST TIME TRANSMISSION>

<DEFINE EVENT>

<TIMELINE> <"TL sync point" --- "preroll duration">

<FIXED PLAY>

Note that the "TL sync point " is the value of the timeline when the sync point has been reached approximately; it must be calculated from the instantaneous timeline value transmitted by the bus controller in response to the preceding REQUEST TIME TRANSMISSION command.

In this case it is in fact easier to use the immediate mode which allows for FIXED PLAY at a specific time from commands given much earlier.

8.2.2. Search and Synchronize

Some time before initial action: <PRESET> <PREROLL DURATION> < time value >

<CLEAR EVENT> <0>

<STOP TIMELINE> (optional)

<PRESET> <SYNC POINT> <time value>

<PRESET> <SYNC VELOCITY> < speed value>

initial action:

<PREROLL SEARCH>

final action (not earlier than when the TMC TALLY has been SEARCHed, successfully

<REQUEST TIME TRANSMISSION> <DEFINE EVENT> < TIMELINE > < "TL sync point" - " preroll duration "> <SYNC>

Note that the "TL sync point " is the value of the timeline when the sync point has been reached precisely; it must be calculated from the instantaneous timeline value transmitted by the bus controller in response to the preceding REQUEST TIME TRANSMISSION command. For editing it is generally desirable to avoid introducing unnecessary waiting times; therefore it is suggested that (TI, sync point - preroll duration) be substituted in the DEFINE EVENT command by (instantaneous timeline value plus some frames) to compensate for transmission delay.

9. Analogue magnitudes

There are many analogue magnitudes to be controlled in a TK. In order to facilitate remote-control of these magnitudes in a variety of modes, a special structure of Information Fields and some additional commands applicable to these Fields are provided.

9.1. Information Fields related to analogue magnitudes

All analogue magnitudes have two related Information Fields:

- One " ACTUAL Field that represents the instantaneous value of the magnitude, and

- One " TARGET Field that contains a possible future value of the magnitude.

Writing to an ACTUAL Field by a PRESET command changes the magnitude immediately.

Writing to a TARGET Field has no immediate effect on the magnitude.

The TARGET value, however, may become the ACTUAL value when one of the appropriate TRANSITION commands is applied to the TARGET Field.

9.2. TRANSITION commands

The TRANSITION commands cause a transition of the magnitude from the value present before the advent of the command, reflected by the ACTUAL Field, to the value specified by the TARGET Field.

There is a choice of several kinds of transition:

The TRANSITION IMMEDIATE command causes an immediate change from the ACTUAL to the TARGET value.

The TRANSITION CONTINUOUS command switches to a mode where the ACTUAL value follows the TARGET value continuously all the time.

The following TRANSITION commands cause controlled transitions from the ACTUAL value to the TARGET value with a specified duration; each of these commands causes a special kind of transition

- TRANSITION LINEAR command: linear transition

- TRANSITION POS-LOG command: positive-logarithmic transition

- TRANSITION S-CURVE command: S-curve transition

- TRANSITION USER-DEFINED command: user-defined transition.

As long as a transition is still in progress it may be stopped by a CANCEL TRANSITION command. This command is also used to cease the status caused by a TRANSITION CONTINUOUS command.

9.3. The CHANGE I/F command

The CHANGE I/F command for a continuous change of the value of an ACTUAL Field with specified direction and speed (incremental/decremental operation).

This command enables the user to increment or decrement an analogue magnitude without knowing the exact absolute value. This may be useful when an analogue magnitude is adjusted manually according to a visual effect. An example would be the focus adjustment controlled by applying the CHANGE I/F command to the Information Field FOCUS ACTUAL.

9.4. The NORMALIZE I/F command

The NORMALIZE I/F command causes the addressed Information Field to assume its standard value.

This command may also be applied to TARGET Fields. Then a smooth transition to the standard value can be managed by applying one of the TRANSITION commands.

Interrogating the Information Field NORMALIZED FIELDS gives a list of the names of all those Information Fields that are currently in the normalized condition.

9.5. The AUTO CONTROL I/F command

The AUTO CONTROL IIF command the addressed Information Field to a mode in which the value of the Field is controlled automatically.

In many cases this command may also be applied to TARGET Fields. Thus a smooth transition to the auto mode can be arranged by applying one of the TRANSITION commands, and, as soon as the transition has ended, by sending another ALTTO CONTROL I/F command, applied to the ACTUAL Field.

While in the Auto Control mode, changes caused by PRESET and/or CHANGE commands will modify the automatically-generated value by shifting the control target.

Interrogating the Information Field AUTO CONTROLLED FIELDS gives a list of the names of all those Information Fields that are currently in the auto-controlled condition.

9.6. Multiple I/F operation

All commands operating on I/Fs representing analogue magnitudes may address just one Information Field or several of them at the same time (using a BEGIN/END construct), thus reducing the bus load and transmission time required.

Chapter 2

Telecine (TK) type-specific messages (Virtual Machine type is 04h)

General Notes

- 1. Commands which have a related information field for tally purposes ("...SELECT"-"... TALLY" pairs) are identified by a ">>" sign in the list below.
- 2. All Transport Motion State commands (indicated below as "TMS") are mutually exclusive.
- 3. Transport Motion Process commands (indicated below as "TMP") are overriding control commands that cause the controlled device to enter automatically the appropriate Transport Motion States to achieve the desired result. The Transport Motion State will be reflected in the TMS tally, as though that TMS command had been issued. TMPs are mutually exclusive.
- 4. In all cases, the temporal order of EVEN75 must be preserved. Mutually exclusive commands actuated by the EVENT construct, that are placed on the EVENT cue at the same trigger point, will cause both events to cancel.

1. Index of keywords, mnemonics and information field names

	Hez	K Message keyword	(mnemonic)		He	x Information	(mnemonic)
						field name	
	40 1	not used			40	not used	
TMS	41	STOP	STOP		41	TIME CODE FROM FILM	TCFF
TMS	42	VARIABLE PLAY	VAPI,		42	not used	
TMS	43	FIXED PLAY	FIPL		43	SELECTED FILM CODE	SEFC
TMS	44	STEP	STEP		44	USERBITS FROM FILM	UBFF
TMS	45	VISIBLE FAST	VFST		45 n	ot used	
TMS	46	SHUTTLE	SHUT		46	FRAMECOUNTER 1	FCON
TMS	47	PLAY SPEED OVERRID	E PSPO		47	FRAMECOUNTER 2	FCTW
	48	READY SELECT	REDS	>>	48	READY TALLY	REDT
	49	SERVO REF SELECT	SRES	>>	49	SERVO REF TALLY	SRET
	4A	FREEZE SELECT	FRES	>>	4A	FREEZE TALLY	FRET
	4B	WETGATE SELECT	WEGS	>>	4B	WETGATE TALLY	WEGT
	4C	AREA MARKER SWITC	H ARMS		4C	not used	
	4D	FILM CODE SELECT	FICS	>>	4D	FILM CODE TALLY	FICT
TMP	4E	TARGET SEARCH	TASE		4E	SYNC VELOCITY	SVTY
TMP	4F	PREROLL SEARCH	PRSE		4F	PREROLL DURATION	PRDU

tech 3245

leci	1 32	40				EBU - Telecine type-specif	ic messages
TMP	50	SYNC	SYNC		50	SYNC POINT	SPNT
	51	SYNC SHIFT	SYSH		51	not used	
	52	GATE BLAST	GABL		52	not used	
	53	DIRT CONCEAL SELECT	DICS	>>	53	DIRT CONCEAL TALLY	DICT
	54	TCG TIME SOURCE SEL			54	TCG TIME SOURCE TLY	TTST
	55	reserved				reserved	
		TCG UB SOURCE SEL	TUSS	>>		TCG UB SOURCE TLY	TUST
		reserved				reserved	
		reserved				not used	
		FIXED SPEED SELECT	FISS	>>		FIXED SPEED TALLY	FIST
ГMS		FIXED PLAY RESERVE	FIPR			not used	
		not used				reserved	
ГMS		ROCK	ROCK		5C		SYAC
11110		EMULSION IN/OUT SEL				EMULSION IN/OUT TLY	EMUT
						5EQUENCE TALLY	SEQT
		LAMP SELECT	LAMS			LAMP TALLY	LAMT
	51	LAWI SLELCT	LAND	//	51		
	60	PRESET	PRST		60	TMP TALLY	TMPT
ГМР	61	FREEZE START	FRST		61	TMS TALLY	TMST
	62	not used			62	VELOCITY TALLY	VELT
	63	not used			63	FIELD DOMINANCE	FIDO
		TELECINE SOURCE SEL	TESS	>>	64		TEST
		AUDIO SOURCE SELECT	AUSS			AUDIO SOURCE TALLY	AUST
		CHANNEL MUTE SELECT	CMUS			CHANNEL MUTE TALLY	CMUT
		SUBTITLE SELECT	SUBS			SUBTITLE TALLY	SUBT
		not used				TIMECODE TO FILM	TTFI
	69	FRAMING CONTROL	FRAC		69	reserved	
		not used				USERBITS TO FILM	UBFI
		not used				reserved	
		not used				PRESETTABLE TIME SRC	PTSR
		not used				reserved	
		not used				PRESETTABLE UB SRC	PUSR
	6F	not used				reserved	
	70.1		MONG		-		
		MONOCHROME SELECT					MONT
		NEGATIVE SELECT	NEGS			NEGATIVE TALLY	NEGT
		B/STRETCH/COMPR SEL	BSCS		72	B/STRETCH/COMPR TLY	BSCT
	73	GRAIN REDUCTION SEL	GRES		73	GRAIN REDUCTION TLY	GRET
		GAIN SELECT	GAIS		74	GAIN TALLY	GAIT
	75	SATURATION STEP SEL	SASS		75	SATURATION STEP TLY	SAST
	76		FIFS		76	FILM FORMAT TALLY	FIFT
	77	AUDIO NR SELECT	ANRS	>>	77	AUDIO NR TALLY	ANRT
		FPN ALIGNMENT	FPNA		78	MATRIX	MTRX
	79	SHIFT SOUND FOLLOWER	SHSF		79	MASKING	MSKG
	7A	LOCAL LOCKOUT SEL	LLOS	>>		LOCAL LOCKOUT TALLY	LLOT
	7B	not used			7B	TIMECODE ATTRIBUTES	TCAT
	7C	TEST PATTERN SWITCH	TEPA		7C	LOOP RANGE	LORA
			DEEC	~~	70	DEEEDAMETALLY	REFT
	7D	REF FRAME SELECT	REFS	>>	D	REF FRAME TALLY	KEF I
		REF FRAME SELECT VIDEO STANDARD SEL	VISS			VIDEO STANDARD TLY	VIST

tech 3245

0 - 1 -	cine type-specific messages				
80	NORMALIZE I/F	NORI	80 NORIMI	LALIZED FIELDS	NORF
81	AUTO CONTROL I/F	AUTI	81 AUTO C	CONTR'D FIELDS	AUTF
82	CHANGE I/F	CHAI	82 FOCUS		FOCA
83	not used		83 FOCUS		FOCT
	not used			IG ACTUAL	FRAA
	not used			NG TARGET	FRAT
	not used			OUT LEVEL ACT	
87				OUT LEVEL TAR	
	not used			ING WIDTH ACT	
	not used			ING WIDTH TARG	
	not used			ING HEIGHT ACT	
	not used			ING HEIGHT TAR	RHET
	not used			ING H POS ACT	RHPA
	not used			ING H POS TARG	
	not used			ING V POS ACT	
8F	not used		8F SCANNI	ING V POS TARG	RVPT
	TRANSITION IMM	TIMM		O WIDTH ACT	RWIA
	TRANSITION CONT	TCON		O WIDTH TARG	RWIT
92		TLIN		DHEIGHT ACT	RHEA
93	TRANSITION POS/LOG			D HEIGHT TARG	
94	TRANSITION S-CURVE			O H POS ACT	
95	TRANSITION USER-DEF	TUSD		OHPOS TARG	
96	not used			O V POS ACT	
97	not used			O V POS TARG	
	CANCEL TRANSITION	TCAN		ING ROTAT ACT	
	not used			ING ROTAT TARG	RROT
	not used		9A not used		
	not used		9B not used		
	not used		9C not used		
	not used		9D not used		
	not used		9E not used		
9F	not used		9F not used		
	not used			R LIFT ACTUAL	MLIA
	not used			R LIFT TARGET	MLIT
	not used		A2 LUM LI		LLIA
	not used		A3 LUM LI		LLIT
	not used		A4 R-Y LIF		RLIA
	not used		A5 R-Y LIF		RLIT
	not used		A6 B-Y LIF		BLIA
	not used		A7 B-Y LIF		BLIT
	not used			R GAMMA ACTUA	
	not used			R GAMMA TARGET	
	not used			AMMA ACTUAL	LGAA
	not used			AMMA TARGET	LGAT
	not used,.			MMA ACTUAL	RGAA
	not used			MMA TARGET	RGAT
	not used			MMA ACTUAL	BGAA
AF	not used		AF B-Y GAI	MMA TARGET	BGAT
	not used			R GAIN ACTUAL	MGNA
	not used			R GAIN TARGET	MGNT
	not used			AIN ACTUAL	LGNA
	not used			AIN TARGET	LGNT
	not used		B4 R-Y GAL		RGNA
	not used		B5 R-Y GAL		RGNT
	not used		B6 B-Y GA		BGNA
B7	not used		B7 B-Y GA	IN TAKGET	BGNT 19
					0 F

		<u> </u>
B8 not used	B8 not used	
B9 not used	B9 not used	
BA not used	BA not used	
BB not used	BB not used	
BC not used	BC not used	
BD not used	BD not used	
BE not used	BE not used	
BF not used	BF not used	
C0 not used	C0 not used	
C1 not used	C1 not used	
		DIIIA
	C2 RED LUM ACTUAL	RLUA
C3 not used	C3 RED LUM TARGET	RLUT
C4 not used	C4 GREEN LUM ACTUAL	GLUA
C5 not used	C5 GREEN LUM TARGET	GLUT
	C6 BLUE LUM ACTUAL	
		BLUA
C7 not used	C7 BLUE LUM TARGET	BLUT
C8 not used	C8 MAGENTA LUM ACTUAL	MLUA
C9 not used	C9 MAGENTA LUM TARGET	MLUT
CA not used	CA CYAN LUM ACTUAL	CLUA
CB not used	CB CYAN LUM TARGET	CLUT
CC not used	CC YELLOW LUM ACTUAL	YLUA
CD not used	CD YELLOW LUM TARGET	YLUT
CE not used	CE not used	
CF not used	CF not used	
		C A T A
D0 not used	D0 SATURATION ACTUAL	SATA
D1 not used	D1 SATURATION TARGET	SATT
D2 not used	D2 RED SAT ACTUAL	RSAA
D3 not used	D3 RED SAT TARGET	RSAT
D4 not used	D4 GREEN SAT ACTUAL	GSAA
D5 not used	D5 GREEN SAT TARGET	GSAT
D6 not used	D6 BLUE SAT ACTUAL	BSAA
D7 not used	D7 BLUE SAT TARGET	BSAT
D8 not used	D8 MAGENTA SAT ACTUAL	MSAA
D9 not used	D9 MAGENTA SAT TARGET	MSAT
DA not used	DA CYAN SAT ACTUAL	CSAA
DB not used	DB CYAN SAT TARGET	CSAT
DC not used	DC YELLOW SAT ACTUAL	YSAA
DD not used	DD YELLOW SAT TARGET	
		YSAT
DE not used	DE DARK SAT ACTUAL	DSAA
DF not used	DF DARK SAT TARGET	DSAT
E0 not used	E0 not used	
El not used	E1 not used	
E2 not used	E2 RED HUE ACTUAL	RHUA
E3 not used	E3 RED HUE TARGET	RHUT
E4 not used	E4 GREEN HUE ACTUAL	GHUA
E5 not used	E5 GREEN HUE TARGET	GHUT
E6 not used	E6 BLUE HUE ACTUAL	BHUA
E7 not used	E7 BLUE HUE TARGET	BHUT
E8 not used	E8 MAGENTA HUE ACTUAL	MHUA
E9 not used	E9 MAGENTA HUE TARGET	MHUT
EA not used	EA CYAN HUE ACTUAL	CHUA
EB not used	EB CYAN HUE TARGET	CHUT
EC not used	EC YELLOW HUE ACTUAL	YHUA
ED not used	ED YELLOW HUE TARGET	YHUT
EE not used	EE not used	
EF not used	EF not used	

F0	not used	F0	H CORR IN/BAND ACT	HINA
F1	not used	Fl	H CORR INIBAND TARG	HINT
F2	not used	F2	H CORR OUT/BAND ACT	HOUA
F3	not used	F3	H CORR OUTIBAND TARG	HOUT,
F4	not used	F4	H CORING ACTUAL	HCOA
F5	not used	F5	H CORING TARGET	HCOT
F6	not used	F6	V CORR INIBAND ACT	VI?4*
F7	not used	F7	V CORR IN/BAND TARG	VINT
F8	not used	F8	V CORR OUT/BAND ACT	VOUA
F9	not used	F9	V CORR OUT/BAND TARG	VOUT
FA	not used	FA	V CORING ACTUAL	VCOA
FB	not used	FB	V CORING TARGET	YCOT
FC	not used	FC	not used	
FD	not used	FD	not used	
FE	not used	FE	not used	
FF	EXTENSION	FF	EXTENSION	

EXTENSION SET

01	not used not used not used	00 01 02	not used not used NEG RED LIFT ACTUAL	NRLA
03	not used not used	02 03 04	NEG RED LIFT ACTUAL NEG RED LIFT TARGET NEG GRN LIFT ACTUAL	NRLA NRLT NGLA
05	not used not used	04 05 06	NEG GRN LIFT TARGET NEG BLU LIFT ACTUAL	NGLA NGLT NBLA
07	not used not used	07 08	NEG BLU LIFT TARGET NEG RED GAIN ACTUAL	NBLT NRGA
09	not used not used	09 OA	NEG RED GAIN TARGET NEG GRN GAIN ACTUAL	NRGT NGGA
	not used not used	-	NEG GRN GAIN TARGET NEG BLU GAIN ACTUAL	NGGT NBGA
	not used not used	-	NEG BLU GAIN TARGET not used	NBGT
OF	not used	OF	REF FRAME WIPE	REFW

2. Keywords

40 not used

41

STOP (TMS command) causes the controlled TK to stop as soon as possible; indeterminate picture.

Format: <STOP>

43

44

45

42 VARIABLE PLAY (TMS command) causes the controlled TK to enter continuously variable playwith specified direction and speed

Format: <VARIABLE PLAY> 3-byte signed binary number; 2's complement <SPEED> scale: 000000h =stationary FIXED SPEED, forward direction 010000h =7F0000h =approximately 127 times FIXED SPEED, forward direction FF0000h =FIXED SPEED, reverse direction 800000b. =128 times FIXED SPEED, reverse direction Note: FIXED SPEED is the value of the ~ defined in the FIXED SPEED IIF FIXED PLAY (TMS command) causes the controlled TK to enter playback at the speed determined by the value in the FIXEDSPEED TALLY I/F. <FIXED PLAY> Format[.] STEP (TMS command) causes the controlled TK to move the film a specified number of frames forward or backward, with respect to its current position; this command is applicable only in the following Tape Motion States: STOP, STEP, VISIBLE FAST (stationary) or VARIABLE PLAY (stationary). Successive commands are cumulative until the next TMS (other than STEP). Format: <STEP> <NUMBER OF FRAMES>1-byte signed number; range: - 128 to + 127 VISIBLE FAST (TMS command) causes the controlled TK to enter fast film motion with visible but not necessarily broadcastable picture, with specified direction and speed. Format: <VISIBLE FAST> $\langle SPEED \rangle$ 3-byte signed binary number; same format as in VARIABLE PLAY

SHUTTLE (TMS command)

 causes the controlled TK to travel at specified direction and speed without necessarily reproducing picture or sound.
 Format:
 <SHUTTLII>
 <SPEED> 3-byte sig ned binary number;

same format as in VARIABLE PLAY

48 READY SELECT establishes the TK in a state to minimize start-up time. Format: <READY SELECT> <SWITCH> boolean value: 00h = OFF 01h - READY

49 SERVO REFERENCE SELECT selects the input switch for video reference source.

Format:
 <SERVO REFERENCE SELECT>
 <MODIl> 1-byte special binary code:
 00h = auto select
 01h = external video input
 02h = external reference input
 FFh = as selected locally

4A FREEZE SELECT cause the controlled TK to provide a frozen broadcastable picture.

Format:	<freeze select=""></freeze>		
	<switch></switch>	boolean value:	
		00h = OFF	
		01h frozen	

48 WETGATE SELECT selects wetgate mode.

4C AREA MARKER SWITCH switches markers on/off.

4D FILM CODE SELECT selects the type of code for all succeeding messages that refer to FILM CODE.

Note: As TIMECODE FROM FILM, FRAME COUNTER 1 and 2 are also contained in an item of the TKspecific INFORMATION FLELD, they may be accessed by a READ command at any time, even if not selected as F7LM CODE by the command FILM CODE SELECT

Format:	<film code="" se<="" th=""><th>ELECT></th></film>	ELECT>
	<code type=""></code>	1-byte special binary code:
		01h = TIMECODE FROM FILM
		02h = FRAMECOUNTER 1
		03h = FRAMECOUNTER 2
		FFh = as selected locally

4E TARGET SEARCH UMP command) causes the controlled TK to move to a defined filmm position m accordance with the SELECTED FILM CODE. Format: <TARGET SEARCH> <FILM CODE> (type TIME; frame referenced) Note: The type of SELECTED FILM CODE is selected by the command FILM CODE SELECT. 4F PREROLL SEARCH (TMP command) causes the controlled TK to move to a film position (reference the SELECTED FILM CODE) in advance of the SYNC POINT determined by PREROLL DURATION and SYNC VELOCITY.

Note: PREROLL DURA TION, SYNC POINT and SYNC VELOCITY are part of the TK-specific INFORMA TION FIELD.

Format: <PREROLL. SEARCH>

50 SYNC (TMP command)

causes the controlled TK to start and synchronize so that PREROLL DURATION later, the film will be at the SYNC POINT and travelling at the SYNC VELOCITY.

- Notes: 1. SYNC POINT and SYNC VELOCITY are part of the TK-specific INFORMATION FIELD, and must be predefined by a PRESET command before execution.
 - 2. The film must be positioned and tallied previously by a PREROLL SEARCH command.
 - 3. If the SYNC VELOCITY is FIXED SPEED, the Tape Motion State reverts to FIXED PLAY after the TK has attained sync. < SYNC >

Format:

SYNC SHIFT 51

> advances/retards the film phase by the specified number of frames, while in FIXED PLAY or in SYNC. Format:

<SYNC SHIFT> <NUMBER OF FRAMES> 1-byte signed number; 128 to + 127range

- 52 GATE BLAST operates air blast in film gate. Format: <GATE BLAST>
- 53 DIRT CONCEAL SELECT switches dirt concealment. Format: <DIRT CONCEAL SELECT> 1-byte binary number: <MODE>

00h = OFFFEh = maximum concealment FFh = as selected locally

54 TCG TIME SOURCE SELECT

selects the time source for the time code generator of the controlled TK.

<TCG TIME SOURCE SELECT> Format:

<TIME SOURCE> 1-byte special binary code:

$$00h = hold$$

01h = run independently, starting with the value

- contained in I/F PRESETTABLE TIME SOURCE
- 02h = run with external, unspecified source

05h = run with SELECTED FILM CODE as

source(contained in I/F SELECTED FILM CODE)

55	reserved	
56	(
57	reserved	
58	reserved	
59		
5A	FIXED PLAY REVERSE (TMS command) causes the controlled TK to enter reverse plathe FIXED SPEED TALLY I/F.	hyback at the nominal speed determined by the value in

5B not used

Format:

5C ROCK (TMS command) causes the-controlled TK to enter the "rock mode". <ROCK> Format :

5D EMULSION IN/OUT SELECT moves objective lens to predetermined position, according to the emulsion side of the film. Format: <EMULSION IN/OUT SELECT> <MODE> 1-byte special binary code:

<FIXED PLAY REVERSE>

00h = emulsion in 01h = emulsion out FFh = as selected locally

tech 3245

5E	SEQUENCE SE		
	defines in-phase	-locked servo start.	
	Format:	<sequence selec<="" td=""><td>CT></td></sequence>	CT>
		<mode></mode>	1-byte special binary code:
			00h = 2 field start
			01h = 4 field start
			02h = 8 field start (PAL only)
5F	LAMP SELECT controls the lam	n power	
	Format:	<pre><lamp select=""></lamp></pre>	
	i ormat.	<mode></mode>	1-byte special binary code:
			00h = off
			01h = reduced power
			1
			02h = full power
			FFh = as selected locally.

The following command is used to preset items whose contents are represented in an Information

60 PRESET

Field:

Permitted Information Field names or TKs are:

FRAMECOUNTER 1 FRAMECOUNTER 2 SYNC VELOCITY PREROLL DURATION SYNC POINT SYNCHRONISM ACCURACY FIELD DOMINANCE PRESETTABLE TIME SOURCE PRESETTABLE UB SOURCE MATRIX MASKING TIMECODE ATTRIBUTES LOOP RANGE

Plus all I/Fs used for analogue magnitudes (named as ... ACTUAL and ... TARGET respectively)

- 61 FREEZE START (TMP command) causes the controlled TK to output a frozen picture of the instantaneous film position and to park PREROLL DURATION in advance of this point, pending a FIXED PLAY or VARIABLE PLAY command in order to start the film motion and to take over from the frozen to the moving picture without disturbances. Format: <FREEZE START>
- 62 not used
- 63 not used

	l electric type ope	eme meeeagee				
64		OURCE SELECT				
			se of integrated multiplexing.			
	Format:	<telecine sour<="" td=""><td></td></telecine>				
		<mode></mode>	1-byte special binary code:			
			meaning of left nibble:			
			lxh = video of telecine 1 2xh = video of telecine 2			
			meaning of right nibble:			
			xlh = audio of telecine 1			
			$x^{2}h =$ audio of telecine 2			
65	AUDIO SOUI selects the ava	RCE SELECT ilable audio channels				
	Format:	<audio source<="" td=""><td>SELECT></td></audio>	SELECT>			
		<channel 1=""></channel>	1-byte special binary code:			
			01h = magnetic sound head(s)			
			02h = optical sound head(s)			
			03h = mag & opt sound heads mixed			
			04h = separate sound 1 from sound follower			
			05h = separate sound 2 from sound follower			
			06h = test tone FFh = as selected locally			
			Ş			
		<channel 2=""></channel>	1-byte special binary code:			
			01h = magnetic sound head(s)			
			02h = optical sound head(s) 03h = mag & opt sound heads mixed			
			03h = mag & opt sound heads mixed 04h = separate sound 1 from sound follower			
			05h = separate sound 1 from sound follower 05h = separate sound 2 from sound follower			
			06h = test tone			
			FFh = as selected locally			
66	CHANNEL M	IUTE SELECT				
	selects auto m					
	Format:	<channel mut<="" td=""><td></td></channel>				
		<switch></switch>	1-byte boolean value:			
			$\begin{array}{ll} 00h = & OFF \\ 01h = & ON \end{array}$			
67	SUBTITLE S					
	switches the c	switches the caption blanking on/off.				
	Format:	<subtitle sele<="" td=""><td></td></subtitle>				
		<switch></switch>	1-byte boolean value: 00h = OFF			
			001 - OFF 01h = ON			
68	not used					
08	not used					
69	FRAMING C controls shifts	ONTROL in the framing in perfor	ration steps.			
	Format:	<framing cont<="" td=""><td>ROL></td></framing>	ROL>			
		<mode></mode>	1-byte signed binary number specifying direction and			
			number of the steps.			

Note: Fine adjustment of framing is controlled by the 1/F FRAMING ACTUAL.

EBU - Telecine type-specific messages

tech	3245	E
6A	not used	
6B	not used	
6C	not used	

6D not used

- 6E not used
- 6F not used

70 MONOCHROME SELECT switches to monochrome. Format[.] <MONOCHROME SELECT> <SWITC11> 1-byte special binary code:

- 00h =colour
 - 01h =standard black and white monochrome
 - 02h =adjustable monochrome
 - as selected locally FFh =

Note: When "adjustable monochrome - is selected, the output picture colour may be adjusted.

71 NEGATIVE SELECT

switches to negative scanning.

Format: <NEGATIVE SELECT>

1-byte special binary code: <SWITCH>

- 00h =positive
- 01h =intermediate positive
- 02h =black and white negative
- colour negative 03h =
- FFh = as selected locally

72 BLACK STRETCH/COMPRESSION SELECT selects and controls the black stretch and compression functions. Format:

<BLACK STRETCH/COMPRESSION SELECT> 1-byte special binary code: <MODE>

- 00h =linear
- stretch function 1 01h =02h =stretch function 2
- 03h =
- compression function 1 04h =compression function 2
- user defined function 1 05h =
- 06h =user defined function 2
- FFh =as selected locally

1-byte special binary code:

73 GRAIN REDUCTION SELECT selects and controls the film grain reducer.

Format[.] <GRAIN REDUCTION SELECT>

<MODE>

00h =switched off 11h =automatic meaning of right nibble: grain size 1 (fine) x2h =grain size 2 x4h =x6h =grain size 3

grain size 4 (coarse) x8h =

meanin	g of left nibble:
3xh =	reduction by 3 dB
5xh =	reduction by 5 dB
7xh =	reduction by 7 dB
Axh =	reduction by 10 dB
FFh =	as selected locally

74 GAIN SELECT switches the gain control. Format:

<gain select=""></gain>			
<gain></gain>	1-byte binary number:		
	00h = 0 dB		
	06h = 6 dB		
	0Ah = 10 dB etc.		
<mode></mode>	1-byte special binary code:		
	00h = AGC off		
	01h = AGC fast		
	02h = AGC delayed		
	FFh = as locally selected		

75 SATURATION STEP SELECT selects the colour saturation.

Format:	<saturation select="" step=""></saturation>			
	<mode></mode>	1-byte special binary code:		
		00h =	OFF	
		01h =	0.75 75 % colour saturation	
		02h =	1.00 100 % colour saturation	
		03h =	1.25 125 % colour saturation	
		04h =	1,50 150 % colour saturation	
		FFh =	as locally selected	

Note: The saturation magnitude selected by this command is the base to which the adjustment controlled by the I/IF SATURATION ACTUAL is added.

- 76 FILM FORMAT SELECT selects the film format. <FILM FORMAT SELECT> Format:
 - < MODE >1-byte special binary code:
 - 01h =Super 8 Super 16 02h =16 mm 03h =04h =Super 35 35 mm, 2 perforations 05h =35 mm, 3 perforations 06h =35 ram, 4 perforations 07h =08h =2-position slide gate 16-position slide gate 09h =FFh = as selected locally

Note: Remote-controlled transitions between some of the choices are obviously not possible.

77 AUDIO NR SELECT controls the none reduction System.

Format: <AUDIO NR SELECT>

<MODE> 1-byte s~ binary code:
 00h = NR off
 01h = NR stereo
 02h = NR mono
 FFh = as selected locally

78 FPN ALIGNMENT activates the fixed pattern noise alignment.

Format: <FPN ALIGNMENT>

79 SHIFT SOUND FOLLOWER advances/retards the phase of a sound follower attached to the telecine by the specified number of frames relative to the film, while the telecine is in FIXED PLAY or in SYNC. Format: SHIFT SOUND FOLLOWER> SNUMBER OF FRAMES> 1-byte signed number

7A LOCAL LOCKOUT SELECT causes the controlled device to disable all local control.

<local lockout="" select=""></local>			
<switch></switch>	boolean	value:	
	00h =	local control not disabled	
	01h =	local control disabled	
		<switch> boolean 00h =</switch>	

- 7B not used
- 7C TEST PATTERN SWITCH controls the built-in test pattern generator on/off.

Format:	<test pattern="" switch=""></test>			
	<mode></mode>	1-byte special binary code:		
		00h	OFF	
		01h	staircase	
		02h	sawtooth	
		03h -	colour bar	
		XXh -	pattern no. XX (user defined)	
		FFh =	as selected locally	

7D REFERENCE FRAME SELECT selects source and mode of reference frames.

Format:	<reference frame="" select=""></reference>			
	<source/>	1-byte special binary code:		
		meaning of right nibble:		
		x0h =	normal	
		x1h =	internal source	
		x2h =	external source	
		meanin	g of left nibble:	
		0xh =	normal	
		lxh =	instantaneous grab	
		2xh =	continuous grab	
		FFh =	as selected locally	

		<display></display>	00h = 01h =	011
7E	VIDEO STANDAR determines the video Format:	o standard used. <video standar<="" td=""><td></td><td></td></video>		
		< SWITCH >	00h = 01h =	special binary code: 525 lines/60Hz 625 lines/50Hz user defined as selected locally
7F	ON AIR SELECT determines the on-ai Format:	ir condition, if require <on air="" select=""> <switch></switch></on>	1-byte = 0 $00h = 0$ $01h = 0$	special binary code: n air off n air on s selected locally

The following commands may be applied to Information Fields that represent analogue magnitudes only. These are the Information Fields with codes from 80h to FEh. It is indicated below whether the command can address ACTUAL or TARGET type of fields or both.

80 NORMALIZE I/F

causes the addressed Information Field to assume its standard value.

Addressed to a TARGET I/F, only the TARGET I/F assumes the standard value, while the corresponding ACTUAL I/F and the analogue magnitude remain unchanged.

Addressed to an ACTUAL I/F, the analogue magnitude that is associated with this Information Field assumes the standard value immediately, and the ACTUAL I/F will reflect this value from now, while the content of the corresponding TARGET I/F will remain unchanged. Format: NORMALIZE I/F NORMALIZE I/F NORMALIZE I/F

<PERMITTED I/F NAME>

Notes: 1. Permitted Information Fields are all ACTUAL and TARGET 2. Several IIF names may be wrapped in a BEGINIEND construct.

81 AUTO CONTROL I/F

switches the automatic control of the addressed 1/17, where applicable.

Addressed to a TARGET I/F, only the TARGET I/F assumes the automatically generated values, while the corresponding ACTUAL I/F and the analogue magnitude remain unchanged.

<AUTO CONTROL I/F> <SWITCH I/F> 1-byte boolean value: 00h = auto control off 01h = auto control on <PERMITTED I/F NAME> Notes: 1 permitted Information fields are all ACTUAL and TARGET Fields.

2. Several I/F names may be wrapped in a BEGIN/END construct.

- 3. Default condition for all permitted I/Fs is "auto control off".
- 4. When switched off the last I/F content will be maintained until another command affects the field.
- 5. This command applied to a TARGET I/F and combined with an appropriate TRANSITION command allows a smooth transition from normal mode to auto mode (if applicable)o

82 CHANGE I/F

Format:

controls a continuous change of the contents of an Information Field.

<CHANGE I/F> <SPEED>

2-byte signed binary number:

0000h =	off (no change)	Ah
---------	-----------------	----

0001h = 1 bit/sec increasing

FFFFh= 1 bit/sec decreasing

<PERMITTED I/F NAME>

scale:

Notes: 1. Permitted Information Belds are all ACTUAL F7elds.

2. Several JIF names may be wrapped in a BEGINIEND construct.

not used

- 84 not used
- 86 not used
- 87 not used
- 88 not used
- 89 not used
- 8A not used
- 8B not used
- 8C not used
- 8D not used
- 8E not used
- 8F not used

90 TRANSITION IMMEDIATE

causes the contents of the addressed TARGET I/F to be transferred immediately to the corresponding ACTUAL I/F, thus causing the analogue magnitude as~ed with this I/F also to assume this value. Format:

2. Several Ilf nam5 ma be d in a BEGINIEND construct.

Notes: 1. Permitted Information F7elds are all TARGET fyelds.

91 TRANSITION CONTINUOUS

causes the contents of the addressed TARGET I/F to be transferred continuously to the corresponding ACTUAL I/F, thus causing the analogue magnitude associated with this I/F also to assume this value.

Format: <TRANSITION CONTINUOUS>
<PERMITTED I/F NAME>

Notes: 1. Permitted Information Fields are all TARGET fields.

- 2. Several I/F names may be wrapped in a BEGIN/END construct.
- 3. The continuous status entered by this command will be ceased upon the arrival of any other TRANS177ON 11F command or the CANCEL TRANSITION command.

92 TRANSITION LINEAR

causes the analogue magnitude associated with the addressed Information Field to execute a linear transition from its instantaneous value, which is also reflected in the associated ACTUAL I/F, to the value contained in the corresponding TARGET I/F, using the specified duration.

Notes: 1. Permitted Information Fields are all TARGET Fields.
2 Several I/F names may be wrapped in a BEGIN/END construct.

93 TRANSITION POS-LOG

causes the analogue magnitude associated with the addressed Information Field to execute a positive-logarithmic transition from its instantaneous value, which is also reflected in the associated ACTUAL I/F, to the value contained in the corresponding TARGET I/F, using the specified duration.

Format: <TRANSITION POS-LOG>

<DURATION> 2-byte binary number; specifies the transition duration in units of frames

<PERMITTED I/F NAME>

Notes: 1. Permitted Information Fields are all TARGET Fields.

2. Several IIF names may be wrapped in a BEGINIEND construct.

94 TRANSITION S-CURVE

causes. the analogue magnitude associated with the addressed Information Field to execute an S-curve transition from its instantaneous value, which is also reflected in the associated ACTUAL I/F, to the value contained in the corresponding TARGET I/F, using the specified duration.

Format: <TRANSITION S-URVE>

<DURATION> 2-byte binary number; specifies the transition duration in units of frames

<PERMITTED I/F NAME>

Notes.. 1. Permitted Information Fields are all TARGET Fields.

2. Several I/F names may be wrapped in a BEGINIEND construct.

tech 3245

95

- TRANSITION USER-DEFINED causes the analogue magnitude associated with the addressed Information Field to execute a userdefined transition from its instantaneous value, which is also reflected in the associated ACTUAL I/F, to the value contained in the corresponding TARGET II/, using the specified duration. <TRANSITION USER-DEFINED> Format: <DURATION> 2-byte binary number; specifies the transition duration in units of frames <PERMITTED I/F NÂME> Notes: 1. Permitted Information Fields are all TARGET Fields.
 - 2. Several I/F names may be wrapped in a BEGIN/END construct.

96 not used

- 97 not used
- 98 CANCEL TRANSITION ceases transitions still in progress with the specified I/F(s). Format: <CANCEL TRANSITION> <PERMITTED I/F NAME>
 - Notes: 1. Permitted Information Fields are all TARGET Fields. 2. Several IIF names may be wrapped in a BEGINIEND construct.

3. Information fields

Notes

1. The item of the INFORMATION FIELD are accessed by the Common messages: READ, UPDATE, CYCLE or SIMULTANEOUS READ

and are tallied by the Common messages:

I/F ITEM RESPONCE or SIMULTANEOUS READ RESPONSE.

These commands use the format::

<KEYWORD> <PARAMETER NAME>

and

<KEYWORD> <PARAMETER NAME> <PARAMETER VALUE>

where

- the PARAMETER NAME uses the Information Field Name specified below,

- the PARAMETER VALUE carries the Information Field contents specified below.

Several names/values may be grouped together by means of a BEGIN/END construct.

2. At power-up the content of Information Fields is not specified, but it is recommended that Information F1elds which are associated with analogue magnitudes assume 'standard' values. 40 not used 41 TIMECODE FROM FILM contain any kind of longitudinal timecode coded on the film. Format: <TIMECODE FROM FILM> <CODE VALIDITY> 1-byte special binary code: 00h = valid LTc01h = derived LTCFFh = not valid LTC <TIME VALUE> standard "time" format 42 not used 43 SELECTED FILM CODE contains the time value of the code (TIMECODE FROM FILM, FRAMECOUNTER 1, FRAMECOUNTER 2), which has been most recently selected by the FILM CODE SELECT command. Format[.] <SELECTED FILM CODE> <IDENTIFIER> 1-byte special binary code: 00h =TIMECODE FROM FILM 02h = FRAMECOUNTER 103h = FRAMECOUNTER 2 FFh = invalid <TIME VALUE> standard "time" format 44 **USERBITS FROM FILM** contains the userbit contents most recently read from flim. <USERBITS FROM FILM> Format: <UB SPECIFICATION> 1-byte special code: bits 0, 1 = 0.0content of userbits unspecified 1.0 =content of userbits is eight-bit character set conforming to ISO 646 and ISO 2022 0,1 = unassigned 1,1 = unassigned bit 2 0 == unassigned 1 = = content of userbits is secondary time data in standard time format bits 3-7 0 =set to 0 until assigned <UB GROUP 8/UB GROUP 7> 4 bytes, each consisting of two 4-bit nibbles. <UB GROUP 6/UB GROUP 5> <UB GROUP 4/UB GROUP 3> each containing <UB GROUP 2/UB GROUP 1> one UB group (MSNibble) Note: UB 1 is the UB group which comes first on the film. 45 not used

46 FRAMECOUNTER 1

contains the instantaneous counting status of the framecounter 1. Format: <FRAMECOUNTER 1 >
<TIME VALUE> standard "time" format

tech 3245

47		FRAMECOUNTER 2 contains the instantaneous counting status of the framecounter 2.			
	Format:	<framecounter 2=""> <time value=""> standard "time" format</time></framecounter>			
48		READY TALLY tallies the status set by the READY SELECT command.			
	Format:	<ready tally=""> <switc11> boolean value: 00h = OFF</switc11></ready>			
49		01h = ON ENCE TALLY set by the SERVO REFERENCE SELECT command.			
	Format:	<servo reference="" tally=""> <mode> 1-byte special binary code: 00h = auto select 01h = external video input 02h = external reference input</mode></servo>			
4A	FREEZE TAL tallies the statu	Y set by the FREEZE SELECT command.			
	Format:	<freeze tally=""> <switch> boolean value: 00h = OFF (= default) 01h = frozen</switch></freeze>			
4B	WETGATE TA tallies the statu	LLY set by the WETGATE SELECT command.			
	Format:	<wetgate tally=""> <mode> 1-byte special binary code: 00h = OFF default) 01h = dry 02h = wet</mode></wetgate>			
4C	not used				
4D	4D FILM CODE TALLY tallies the code currently selected by the most recent FILM CODE S				
	Format:	<film code="" tally=""> <code type=""> 1-byte special binary code: 00h = TIMECODE FROM FILM 02h = FRAMECOUNTER 1 03h = FRAMECOUNTER 2</code></film>			
4E	SYNC VELOC contains a velo	ΓY ity used as the synchronization velocity for the SYNC command.			
	Format:	<sync velocity=""> <speed> 3 byte signed binary number: 2's complement</speed></sync>			

stat: <SYNC VELOCITY>
<SPEED> 3-byte signed binary number; 2's complement

000000h = stationary 010000h = FIXED SPEED, forward direction 7F0000h = approximately 127 times FIXED SPEED, forward direction FF0000h = FIXED SPEED, reverse direction 800000h = 128 times FIXED SPEED, reverse direction

Notes: 1 FIXED SPEED is the value of the speed defined in the FIXED SPEED I/F. 2. This is the same coding as in the argument of the VARLABLE PLAY command.

4F PREROLL DURATION

contains the preroll time used in advance of sychronizing processes.

Format: <PREROLL DURATION>
<TIME VALUE> standard "time" format

50 SYNC POINT

contains a FILM CODE value used as the synchronization point for the SYNC command.

Format: <SYNC POINT> < TIME VALUE > standard time format

not used

- 52 not used
- 53 DIRT CONCEAL TALLY tallies the status set by the DIRT CONCEAL SELECT command. Format: <DIRT CONCEAL TALLY> <MODE> 1-byte binary number:

00h = OFF (= default)

FEh = maximum concealment

54 TCG TIME SOURCE TALLY tallies the status set by the TCG TIME SOURCE SELECT command.

Format: <TCG TIME SOURCE TALLY>
<TIME SOURCE> 1-byte special binary code:

- 00h = hold
- 01h = run independently, starting with the value contained in I/F PRESETTABLE TIME SOURCE LTC
- 02h = run with external, unspecified source
- 05h = run with FILM CODE as source (contained in I/F TIMECODE FROM FILM)

- 55 reserved
- 56 TCG USERBIT SOURCE TALLY tallies the status set by the TCG USERBIT SOURCE SELECT command.
 - - 02h = userbits from external, unspecified source

tech 3245

57 reserved

- 58 not used
- 59 FIXED SPEED TALLY tallies the status set by the FIXED SPEED SELECT command. Format: <FIXED SPEED TALLY> <SPEED> 1-byte special binary co&:

-byte special binary co&:					
10h =	6	frames/sec			
20h =	6 1/4	frames/sec			
30h =	12	frames/sec			
40h =	12 1/2	frames/sec			
50h =	16 2/3	frames/sec			
60h =	17 1/7	frames/sec			
70h =	18	frames/sec			
80h =	24	frames/sec			
90h =	25	frames/sec			
A0h =	30	frames/sec			
B0h =	48	frames/sec			
C0h =	50	frames/sec			
D0h =	60	frames/sec			

- 5A not used
- 5B reserved
- 5C SYNCHRONISM ACCURACY contains a time value that determines the accuracy of synchronizing processes, i.e. it specifies the maximum allowed offset error at the SYNC POINT. Format: SYNCHRONISM ACCURACY> <FIELDS> 1-byte unsigned number
- 5D EMULSION IN/OUT TALLY tallies the status set by the EMULSION IN/OUT SELECT command. Format: <EMULSION IN/OUT TALLY> <MODE> 1-byte special binary code: 00h = emulsion in 01h. = emulsion out
- 5E SEQUENCE TALLY tallies the status set by the SEQUENCE SELECT command. Format: <SEQUENCE TALLY> <MODE> f-byte special binary code: 00h = 2 field start (= defauk) 01h = 4 field start 02h = 8 field start (PAL only)

5F LAMP TALLY tallies the status of the lamp. Format: <LAMP TALLY> <MODE> 1-byte special binary code: 00h = off 01h = reduced power

- 02h = full power
- F0h = lamp failure

60 TMP TALLY

tallies the current Transport Motion Process of the controlled TK, and spedM its success in accomplishing that process.

- Format: <TMP TALLY>
 - <KEYWORD> 1 -byte value, that contains the keyword of the last commanded TMP.

<SUCCESS LEVEL> 1-byte special binary code:

00h = trying; transition in process

- 01h = successful
- 02h = failure; this tally should be supplemented by an ERROR message as appropriate

61 TMS TALLY

tallies the current Transport Motion State of the controlled TK, and specifies its success in accomplishing that process.

Format: <TMS TALLY>

<KEYWORD> 1-byte value, that contains the keyword of the last active commanded TMS command.

<SUCCESS LEVEL> 1-byte special binary code:

00h = trying; transition in process

- 01h = successful
- 02h = failure; this tally should be supplemented by an ERROR message as appropriate
- 62 VELOCITY TALLY

tallies the current transport velocity. Note that this is the true velocity in all TMS modes. Format:

. <velociti

< SPEED > 3-byte signed binary number; 2's complement same coding as in the argument of the VARIABLE PLAY command

63 FIELD DOMINANCE

contains the value specifying the field-coincidence with film frame.

Format: <FIELD DOMINANCE>

<mode></mode>	1 -byte sp	pecial	binary	code:

00h = field 1 (= default)

- 01h = field 2
- 02h = field 3
- 03h = field 4
- 04h = field 5 (PAL only)
- 05h = field 6 (PAL only)
- 06h = field 7 (PAL only)
- 07h = field 8 (PAL only)
- 64 TELECINE SOURCE TALLY

tallies the status set by the TELECINE SOURCE SELECT command.

Format: <TELECINE SOURCE TALLY> <MODE> 1-byte special binary code:

> meaning of left nibble: lxh = video of telecine 1 2xh = video of telecine 2meaning of right nibble: xlh = audio of telecine 1x2h = audio of telecine 2

65	AUDIO SOURCE TALLY
	tallies the status set by the AUDIO SOURCKS8Wr coo~

Format:

- <AUDIO SOURCE TALLY>
 - <CHANNEL 1 > 1-byte special binary code:
 - 01h = magnetic sound head(s)
 - 02h = optical sound head(s) (= default)
 - 03h = mag & opt sound heads mixed
 - 04h = separate sound 1 from sound follower
 - 05h = separate sound 2 from sound follower
 - 06h = test tone

<channel 2=""></channel>	1-byte special binary code:	
--------------------------	-----------------------------	--

- 01h = magnetic sound head(s)
 - 02h = optical sound head(s) (default)
 - 03h = mag & opt sound heads mixed
 - 04h = separate sound 1 from sound follower
 - 05h = separate sound 2 from sound follower
 - 06h = test tone
- 66 CHANNEL MUTE TALLY tallies the status set by the CHANNEL MUTE SELECT command. Format: <CHANNEL MUTE TALLY> <SWITCH> boolean value: 00h = OFF (= default) 01h. = ON
- 67 SUBTITLE TALLY tallies the status set by the SUBTITLE SELECT command.

Format:	<subtitle tally=""></subtitle>		
	<switch></switch>	1-byte b	oolean value:
		00h =	OFF (= default)
		01h =	caption blanking ON

- 68 TIMECODE TO FILM contains the current timecode value being generated by a timecode generator. Format: <TIMECODE TO FILM> <TIME VALUE> standard "time" format
- 69 reserved

6A USERBITS TO FILM contains the current userbit contents being generated by a timecode generator to go with the longitudinal timecode. Format: <USERBITS TO FILM>

<UB SPECIFICATION> <UB GROUP S/UB GROUP 7> <UB GROUP 6/UB GROUP 5 > <UB GROUP 4/UB GROUP 3 > <UB GROUP 2/UB GROUP 1 >

for format description see USERBIT FROM FILM"

- 6B reserved
- 6C PRESETTABLE TIME. SOURCE contains a time value that can be PRESET and be used to start a timecode generator by selecting it in a TCG TIME SOURCE SELECT command.

	Format:	<presettable source="" time=""> <time value=""> standard "time" format</time></presettable>
6D	reserved	
6E	contains a u	ABLE UB SOURCE serbit pattern that can be PRESET and be used by a timecode generator by selecting it in SOURCE SELECT command. <presettable source="" ub=""> <ub specification=""> for format description <ub 7="" 8="" group="" ub=""> see "USERBIT FROM FILM" <ub 5="" 6="" group="" ub=""> <ub.group 3="" 4="" group="" ub=""> <ub 1="" 2="" group="" ub=""></ub></ub.group></ub></ub></ub></presettable>
6F	reserved	
70		ROME TALLY atus set by the MONOCHROME SELECT command. <monochrome tally=""> <switch> 1-byte special binary code: 00h = colour (= default) 01h = standard black and white monochrome 02h = adjustable monochrome</switch></monochrome>
71	NEGATIVE tallies the sta Format:	E TALLY atus act by the NEGATIVE SELECT command. <negative tally=""> < SWITCH > 1-byte special binary code: 00h. = positive (= default) 01h = intermediate positive 02h = black and white negative 03h = colour negative</negative>
72		RETCH/COMPRESSION TALLY atus set by the BLACK STRETCH/COMPRESSION SELECT command. <black compression="" stretch="" tally=""> <mode> 1-byte special binary code: 00h = linear (= default) 01h = stretch function 1 02h = stretch function 2 03h = compression function 1 04h = compression function 2 05h = user defined function 1 06h = user defined function 2</mode></black>

tecl	h 3245		EBU - Telecine type-specific me
73	GRAIN REDUC		N REDUCTION SELECT command.
	Format:	-	EDUCTION TALLY>
		<mode></mode>	1-byte special. binary code:
			00h = switched off (= default)
			11h = automatic
			meaning of right nibble:
			$x_{2h}^{2h} = \text{grain size 1 (fine)}$
			x4h = grain size 2 x6h = grain size 3
			x8h = grain size 4 (coarse)
			meaning of left nibble:
			3xh = reduction by 3 dB
			5xh = reduction by 5 dB
			7xh = reduction by 7 dB
			Axh = reduction by 10 dB
74	GAIN TALLY		
		2	SELECT command.
	Format:	<gain tai<="" td=""><td></td></gain>	
		<gain></gain>	1-byte binary number: 00h = 0 dB (= default) $06h = 6 dB$ $0Ah = 10 dB$ etc.
		<mode></mode>	1-byte special binary code:
			00h = AGC off (= default)
			01h = AGC fast
			02h = AGC delayed
75	SATURATION S	STEP TALLY	
10			RATION STEP SELECT command.
	Format:	ŚSATURAT	TION STEP TALLY>
		<mode></mode>	1-byte special binary code
			00h = OFF (= default) 01h = 0.7575% colour saturation
			01h = 0.7575% colour saturation 02h = 1.00100010 colour saturation
			$03h = 1.25 \ 125\%$ colour saturation
			$04h = 1.50 \ 150\%$ colour saturation
76		TATIX	
76	FILM FORMAT tallies the film fo command.		s status may be set partly by the FILM FORMAT SELECT
	Format:	<film for<="" td=""><td>RMAT TALLY></td></film>	RMAT TALLY>
		<mode></mode>	1-byte special binary code:
			01h = Super 8
			02h = Super 16
			03h = 16 mm 04h = Super 35
			$U_{4}U = 0 U_{1}U_{2}U_{1}$

- 04h = Super 35
- 05h = 35 mm, 2 perforations
- 06h = 35 mm, 3 perforations07h = 35 mm, 4 perforations
- 08h = 2-position slide gate 09h = 16-position slide gate

nobio nuc me		
tallies the status se	et by the AUDIO	ONR SELECr com~.
Format:	<audio b="" nr<=""></audio>	TALLY>
	<mode></mode>	1-byte special binary code:
		00h = NR off (= default)
		01h = NR stereo
		02h = NR mono

78 MATRIX

77

contains the value specifying one of several linear matrix coefficients. Format: <MATRIX> <SEL

-byte special bin	ary code:
matrix OFF	default)
matrix 1	
matrix 2	
matrix 3	
	matrix OFF matrix 1 matrix 2

79 MASKING

contains the value specifying one of several logarithmic masking coefficients. Format: <MASKING>

<selection> 1</selection>	-byte special binary code	:
00h =	masking OFF	default)
01h =	masking 1	
02h =	masking 2	
0.01	1	

- 03h = masking 3
- etc.

7A LOCAL LOCKOUT TALLY

tallies the status set by the LOCAL LOCKOUT SELECT command. <LOCAL LOCKOUT TALLY> Format:

1-byte Boolean value: <SWITCH>

- 00h = local control not disabled
- 01h = local control disabled

7B TIMECODE ATTRIBUTES

contains the attributes of the film timecode and the frame counters. Format: <TIMECODE ATTRIBUTES>

1-byte special binary code: <ATTRIBUTE>

- 00h = 24 frame count code
- 01h = 25 frame count code
- 02h = 30 frame count code
- 12h = 30 frame count code compensated

7C LOOP RANGE defines the boundaries of the loop executed in "rock" operations, where applicable. <LOOP RANGE> Format: <UPPER LIMIT> 1 -byte unsigned binary number: specifies the number of frames in forward direction, counted from the starting position

<lower limit=""></lower>	1-byte unsigned binary number:
	specifies the number of frames in reverse direction,
	counted from the starting position

7D REFERENCE FRAME TALLY tallies the status set by the REFERENCE FRAME SELECT command. Format: <REFERENCE FRAME TALLY> <SOURCE> 1-byte special binary code: meaning of right nibble: x0h = normal (= default)x1h = internal source x2h = external source meaning of left nibble: x0h = normal (= default)x1h = instantaneous grab x2h = continuous grab <DISPLAY> 1-byte special binary code: 00h = off (= default)01h = on7E VIDEO STANDARD TALLY tallies the status set by the VIDEO STANDARD SELECT command. Format: <VIDEO STANDARD TALLY> <SWITCH> 1-byte special binary code: 00h = 525 lines/60 Hz01h = 625 lines/50 Hzxxh = user defined7F ON AIR TALLY indicates the on-air condition, if required. Format: <ON AIR TALLY> 1-byte special binary code: <SWITCH> 00h = on air' off (= default)01h = 'on air' on

80 NORMALIZED FIELDS indicates the names of all I/Fs that are currently in their normalized condition. Format:

Note: If no I/F is in this condition. BEGIN is immediately followed by END.

81 AUTO CONTROLLED FIELDS indicates the names of all I/Fs that are currently automatically controlled.

Note: If no 1/F is in this condition, BEGIN is immediately followed by END.

The following Information Fields represent Analogue Magnitudes; all these have the following characteristics in common.

- 1. Every magnitude has two associated Information Fields, one for the ACTUAL value, the other for a TARGET value.
- 2. All these Information Fields can be loaded by a PRESET command.
- 3. In order to cause a variety of transitions of the magnitudes, "activate" commands (e.g. CHANGE, TRANSITION) may be applied.
- 4. All these Information Fields use the same format:

Format:	<i f="" name=""></i>	
	<magnitude></magnitude>	2-byte unsigned binary number
		scale marks:
		0000h = minimum value
		FFFFh= maximum value

The hexadecimal codes and Information Field Names are:

82	FOCUS ACTUAL
83	FOCUS TARGET
84	FRAMING ACTUAL
85	FRAMING TARGET
86	AUDIO OUT LEVEL ACTUAL
87	AUDIO OUT LEVEL TARGET
88	SCANNING WIDTH ACTUAL
89	SCANNING WIDTH TARGET
8A	SCANNING HEIGHT ACTUAL
8B	SCANNING HEIGHT TARGET
8C	SCANNING H POSITION ACTUAL
8D	SCANNING H POSITION TARGET
8E	SCANNING V POSITION ACTUAL
8F	SCANNING V POSITION TARGET
90	REPRODUCTION WIDTH ACTUAL
91	REPRODUCTION WIDTH TARGET
92	REPRODUCTION HEIGHT ACTUAL
93	REPRODUCTION HEIGHT TARGET
94	REPRODUCTION H POSITION ACTUAL
95	REPRODUCTION H POSITION TARGET
96	REPRODUCTION V POSITION ACTUAL
97	REPRODUCTION V POSITION TARGET
98	SCANNING ROTATION ACTUAL
99	SCANNING ROTATION TARGET
• •	
A0	MASTER LIFT ACTUAL
A1	MASTER LIFT TARGET
A2	LUMINANCE LIFT ACTUAL
A3	LUMINANCE LIFT TARGET
A4	R-Y LIFT ACTUAL
A5	R-Y LIFT TARGET
A6	B-Y LIFT ACTUAL
A7	B-Y LIFT TARGET

tech 3245

A8	MASTER GAMMA ACTUAL
A9	MASTER GAMMA TARGET
AA	LUMINANCE GAMMA ACTUAL
AB	LUMINANCE GAMMA TARGET
AC	R-Y GAMMA ACTUAL
AD	R-Y GAMMA TARGET
AD AE	B-Y GAMMA ACTUAL
AF	B-Y GAMMA TARGET
B0	MASTER GAIN ACTUAL
B1	MASTER GAIN ACTORE MASTER GAIN TARGET
B1 B2	
	LUMINANCE GAIN ACTUAL
B3	LUMINANCE GAIN TARGET
B4	R-Y GAIN ACTUAL
B5	R-Y GAIN TARGET
B6	B-Y GAIN ACTUAL
B7	B-Y GAIN TARGET
\mathbf{C}^{2}	DEDITIMINANCE ACTIVAT
C2	RED LUMINANCE ACTUAL
C3	RED LUMINANCE TARGET
C4	GREEN LUMINANCE ACTUAL
C5	GREEN LUMINANCE TARGET
C6	BLUE LUMINANCE ACTUAL
C7	BLUE LUMINANCE TARGET
C8	MAGENTA LUMINANCE ACTUAL
C9	MAGENTA LUMINANCE TARGET
CA	CYAN LUMINANCE ACTUAL
CB	CYAN LUMINANCE TARGET
CC	YELLOW LUMINANCE ACTUAL
CD	YELLOW LUMINANCE TARGET
DA	
D0	SATURATION ACTUAL
D1	SATURATION TARGET
D2	RED SATURATION ACTUAL
D3	RED SATURATION TARGET
D4	GREEN SATURATION ACTUAL
D5	GREEN SATURATION TARGET
D6	BLUE SATURATION ACTUAL
D7	BLUE SATURATION TARGET
D8	MAGENTA SATURATION ACTUAL
D9	MAGENTA SATURATION TARGET
DA	CYAN SATURATION ACTUAL
DB	CYAN SATURATION TARGET
DC	YELLOW SATURATION ACTUAL
DD	YELLOW SATURATION TARGET
DE	DARK SATURATION ACTUAL
DF	DARK SATURATION TARGET
E2	RED HUE ACTUAL
E2 E3	RED HUE TARGET
сэ Е4	GREEN HUE ACTUAL
E4 E5	GREEN HUE TARGET
Е3 Еб	BLUE HUE ACTUAL
E0 E7	BLUE HUE TARGET
E7 E8	MAGENTA HUE ACTUAL
Е8 Е9	MAGENTA HUE ACTUAL MAGENTA HUE TARGET
E9 EA	CYAN HUE ACTUAL
EA ED	CYAN HUE ACTUAL

EB CYAN HUE TARGET

EC	YELLOW HUE ACTUAL
ED	YELLOW HUE TARGET
F0	H CORRECTION IN-BAND ACTUAL
F1	H CORRECTION IN-BAND TARGET
F2	H CORRECTION OUT-OF-BAND ACTUAL
F3	H CORRECTION OUT-OF-BAND TARGET
F4	H CORING ACTUAL
F5	H CORING TARGET
F6	V CORRECTION IN-BAND ACTUAL
F7	V CORRECTION IN-BAND TARGET
F8	V CORRECTION OUT-OF-BAND ACTUAL
F9	V CORRECTION OUT-OF-BAND TARGET
FA	V CORING ACTUAL
FB	V CORING TARGET
FF02	NEGATIVE RED LIFT ACTUAL
FF03	NEGATIVE RED LIFT TARGET
FF04	NEGATIVE GREEN LIFT ACTUAL
FF05	NEGATIVE GREEN LIFT TARGET
FF06	NEGATIVE BLUE LIFT ACTUAL
FF07	NEGATIVE BLUE LIFT TARGET
FF08	NEGATIVE RED GAIN ACTUAL
FF09	NEGATIVE RED GAIN TARGET
FF0A	NEGATIVE GREEN GAIN ACTUAL
FF0B	NEGATIVE GREEN GAIN TARGET
FF0C	NEGATIVE BLUE GAIN ACTUAL

- FFOC NEGATIVE BLUE GAIN ACTUAL FFOD NEGATIVE BLUE GAIN TARGET
- FF0E not used
- FF0F REFERENCE FRAME WIPE

Reproduction, even in part, of this publication is forbidden except with the prior, written authorisation of the Publisher

Editeur responsable G.T. Waters, Ancienne Route 17 A, CH-1218 Grand. Saconnex/Genève, Suisse.

REMOTE CONTROL SYSTEMS FOR BROADCASTING PRODUCTION EQUIPMENT Routing switcher type-specific messages

Tech. 3245-E - Supplement 5

October 1992

CONTENTS

Introduc	stion	3
Chapter	1 General concepts	5
1.	Scope of this Dialect	5
2.	Multidimensional Information Fields	6
3.	Wildcard Characters	6
4.	Procedures and Events	7
5.	Sample Command Sequences	7
Chapter	2 Routing Switcher Type–specific Messages	11
1.	Numerical Index of Keywords, Information Field Names, and Mnemonics	11
2.	Keywords	11
3.	Information Fields	14

Introduction

Document Tech. 3245 describes the specifications of a digital remote–control system for broadcasting production equipment. It defines completely the electrical/mechanical level (level 1), and the supervisory level (level 2), of the interface. The two remaining levels – the system service level (level 3), and the virtual machine level (level 4) – are defined only in terms of function and control message syntax.

Supplement 1 to Tech. 3245 completes the definition of the system service level by detailing the system service messages and, in addition, defines the virtual machine messages which are common to all types of virtual machine – the common messages.

The present Supplement defines the type–specific virtual machine messages which are applicable to routing switchers. Type–specific messages applicable to other categories of equipment are defined in other supplements to Tech. 3245.

In order to implement a complete network, the system designer therefore requires:

Document Tech. 3245	_	the general specification
Supplement 1	_	system service and common messages

and one or more other supplements appropriate to the category or categories of equipment to be used.

The specification described in this Supplement has been developed jointly with the SMPTE, and is functionally identical to that to be published as an SMPTE Recommended Practice.

Chapter 1 General concepts

This *Chapter* contains a general explanation of some of the concepts used in the formulation of the Routing Switcher Type–Specific message set. It constitutes tutorial information, and is intended to assist in the understanding of the specifications in *Chapter 2* of this document. A working knowledge of the following ESbus topics is assumed:

ESbus system overview Control Message architecture Supervisory protocol Tributary interconnection Electrical and mechanical characteristics System Service and Common Messages

Conventions

Acronyms and abbreviations are shown in upper-case characters.

e.g. Information Field – I/F

Message Keywords and names of Information Fields are shown in upper-case characters

e.g. CONNECT CROSSPOINT SOURCE POINTER

These command Keywords and Information Field names are used within the text of this document to imply requested action, Information Field identity, and in turn the Information Field contents of the Virtual Machine. To assist in readability of this document, these terms are used in the context of the presentation material.

e.g. "If this I/F is PRESET, ..."

("PRESET" in this context refers to a command contained within the Type-specific Message set.)

Terms with special meaning to this or related documents are shown with leading upper-case characters:

e.g. Virtual Machine Common Messages.

1. Scope of this Dialect

This dialect is intended for a remote–control system to be used as a link between a routing switcher control system (as the controlling device) and its associated routing switcher matrices (as controlled device(s)).

It is not intended for controlling the routing switcher control system itself from other places.

2. Multidimensional Information Fields

The controlled elements in a routing switcher are the crosspoints. The crosspoints are arranged in a multidimensional way, i.e. to identify an individual crosspoint, it is usually necessary to specify the following characteristics of its location:

- its row (1st dimension);

- its column (2nd dimension);

its level (3rd dimension);

- its matrix (4th dimension) – applies only to a switcher consisting of several matrices.

In ESbus dialects all kinds of status data are maintained in Information Fields (I/Fs). Each type of information has its corresponding I/F associated with a unique I/F Name.

In routing switcher systems nearly all status data are related to crosspoints. Due to the fact that crosspoints are arranged in a multidimensional way, and that each crosspoint is the carrier of status data, the I/Fs describing routing switcher data must also be multidimensional. The particular item of information belonging to one crosspoint is just an element of the whole Information Field of a certain type.

This requires additional descriptors which point to the "location" of this element within the field, i.e. to the row , column, level, and matrix.

When such an element of an I/F is tallied, these descriptors are simply carried as parameters in the format.

When such an element is accessed, however, a different mechanism is required due to the fact that the Common commands which access I/Fs (e.g. READ, UPDATE, CYCLE) allow only for specifying the I/F name; no additional descriptor information is permitted in the format.

Such additional information must therefore be transmitted in advance by presetting one or more "pointers", which predefine the parameters necessary for multidimensional access.

The pointers themselves also reside in Information Fields of their own and thus can be PRESET as any other presettable I/F. This gives the advantage that the pointer information need only be transmitted when it really changes, not in advance of every I/F access.

The names of the relevant pointers are:

- MATRIX POINTER,
- LEVEL POINTER,
- SOURCE POINTER,
- DESTINATION POINTER.

Note: In order to PRESET a multidimensional I/F no pointers are required, since the whole format of an I/F appears within the PRESET command, including the descriptors.

Due to special requirements of routing switchers, one of these dimensions may not be specified, e.g. the I/F DESTINATIONS-TO-SOURCE does not use the DESTINATION POINTER, because it shows all connections between a specified source and any destination in the form of a list.

3. Wildcard Characters

In order to facilitate access to a whole array (row, column, level, matrix) of one type of a multidimensional status information, a "wildcard" character is introduced (FFh or FFFFh).

A pointer, preset to the wildcard, indicates (when an I/F access requiring this pointer is made), that the information corresponding to the full available range of the pointer is desired.

For example, if the LEVEL POINTER is preset to FFh, a subsequent READ of the I/F CROSSPOINT STATUS will result in a multiple I/F RESPONSE message (either in many single messages or in one message using the BEGIN/END construct or in any combination) tallying the crosspoint status of all existing levels.

A second application of the wildcard concerns certain commands (e.g. CONNECT CROSSPOINT), where it can be used as a normal parameter with the same effect.

The description of the commands and information fields in *Chapter 2* contains detailed instructions as to when and how wildcards can be used.

4. Procedures and Events

As with all Dialects the complete Routing Switcher Dialect consists, by definition, of both Common Messages and the Routing Switcher Type–specific Dialect described in this document.

The elements of the Common Messages prove very useful for switcher applications, and are therefore recommended.

The concept of Procedures, provided by the Common Messages, can be used to predefine a lengthy set of commands (by the DEFINE PROCEDURE command) pending the arrival of the EXECUTE PROCEDURE command, which causes the entire Procedure to be performed.

The concept of Events, provided by the Common Messages, can be used to predefine a command (by the DEFINE EVENT command) to be executed at a certain point in time. As the time scale, usually the Timeline, is used, an individual software clock running in each controlled Virtual Machine is preset by the bus controller (by the System Service command REQUEST TIME TRANSMISSION).

Both concepts can easily be combined by first defining a procedure, then defining an Event with EXECUTE PROCEDURE as the command to be carried out on the Timeline.

Details about these facilities are described in the documents about System Service and Common Messages mentioned above.

5. Sample Command Sequences

The following message sequences show the application of the dialect (including the Common Messages). The commands are also shown encoded into their hex codes.

The PRESET commands signed with a "*" sign may be omitted if the corresponding I/F already has been preset by a preceding PRESET command.

5.1. Disconnecting all crosspoints in level #10 of matrix #2

<disconnect crosspoint=""></disconnect>	<43>
<matrix 2="" ==""></matrix>	<02>
<LEVEL = 10>	<0A>
<source =="" wildcard=""/>	<ffff></ffff>
<destination =="" wildcard=""></destination>	<ffff></ffff>

5.2. Requesting the status of all crosspoints in level #2 of matrix #1

<preset></preset>	*	<60>
<matrix pointer=""></matrix>		<41>
<mathdata <mathd<="" <mathdata="" td=""><td></td><td><01></td></mathdata>		<01>
<preset></preset>	*	<60>
<level pointer=""></level>		<42>
<LEVEL = 2 $>$		<02>
<preset></preset>	*	<60>
<source pointer=""/>		<43>
<source =="" wildcard=""/>		<ffff></ffff>
<read></read>		<22>
<destinations-to-source></destinations-to-source>		<46>

The response from the controlled Vir	tual Machine may be:
--------------------------------------	----------------------

<i f="" item="" response=""></i>	<23>
<begin></begin>	<01>
<destinations-to-source></destinations-to-source>	<46>
$$	<01>
<level 2="" ==""></level>	<02>
<source 0="" ==""/>	<0000>
<parameter count="1"> (one connection)</parameter>	<0001>
<destination 3="" ==""></destination>	<0003>
<destinations-to-source></destinations-to-source>	<46>
$$	<01>
<level 2="" ==""></level>	<02>
< S OURCE = 1>	<0001>
<parameter count="0"> (no connection)</parameter>	<0000>
<destinations-to-source></destinations-to-source>	<46>
<matrix 1="" ==""></matrix>	<01>
<level 2="" ==""></level>	<02>
<source 2="" ==""/>	<0002>
<parameter count="4"> (multiple connections)</parameter>	<0004>
<destination 2="" ==""></destination>	<0002>
<destination 4="" ==""></destination>	<0004>
<destination 9="" ==""></destination>	<0009>
<destination 17="" ==""></destination>	<0011>
<destinations-to-source></destinations-to-source>	<46>
<matrix 1="" ==""></matrix>	<01>
<level 2="" ==""></level>	<02>
<source 31="" ==""/>	<001F>
<parameter count="1"></parameter>	<0001>
<destination 1="" ==""></destination>	<0001>
<end></end>	

5.3. Instructing the controlled Virtual Machine to tally any changes in the crosspoint status of matrix #3

<preset></preset>	*	<60>
<matrix pointer=""></matrix>		<41>
<matrix 3="" ==""></matrix>		<03>
PRESET>	*	<60>
<level pointer=""></level>		<42>
<level =="" wildcard=""></level>		<ff></ff>
<preset></preset>	*	<60>
<destination pointer=""></destination>		<44>
<destination =="" wildcard=""></destination>		<ffff></ffff>
<update></update>		<3F07>
<sources-to-destination></sources-to-destination>		<47>

On a change, the response from the controlled Virtual machine may be:

<i f="" item="" response=""></i>	<23>
<sources-to-destination></sources-to-destination>	<47>
$$	<03>
$\langle \text{LEVEL} = 2 \rangle$	<02>
<destination 9="" ==""></destination>	<0009>
$\langle PARAMETER COUNT = 1 \rangle$	<0001>
<source 11="" ==""/>	<000B>

J.4.	Demining a procedure that establishes a default configuration of	CONNECTION
<def< td=""><td>TINE PROCEDURE></td><td><3F0B></td></def<>	TINE PROCEDURE>	<3F0B>
	<name 1="" ==""></name>	<01>
	<byte count="XX"></byte>	<00XX>
	<connect crosspoint=""></connect>	<42>
	$\langle MATRIX = 1 \rangle$	<01>
	$\langle LEVEL = 1 \rangle$	<01>
	\langle SOURCE = 0 \rangle	<0000>
	<destination 12="" ==""></destination>	<000C>
	<connect crosspoint=""></connect>	<42>
	$\langle MATRIX = 1 \rangle$	<01>
	$\langle LEVEL = 1 \rangle$	<01>
	\langle SOURCE = 1 \rangle	<0001>
	$\langle DESTINATION = 10 \rangle$	<000A>
	<connect crosspoint=""></connect>	<42>
	<matrix 1="" ==""></matrix>	<01>
	$\langle \text{LEVEL} = 1 \rangle$	<01>
	<source 2="" ==""/>	<0002>
	<destination 2="" ==""></destination>	<0002>
	<connect crosspoint=""></connect>	<42>
	$\langle MATRIX = 1 \rangle$	<01>
	$\langle \text{LEVEL} = 1 \rangle$	<01>
	<source 3="" ==""/>	<0003>
	<destination 7="" ==""></destination>	<0007>

5.4. Defining a procedure that establishes a default configuration of connections

Once defined, the procedure may be carried out as often as desirable simply by commanding:

<execute procedure=""></execute>	<26>
<name 1="" ==""></name>	<01>

5.5. Setting a crosspoint at 09:00 on the timeline

<define event=""></define>	<27>
<name 3="" ==""></name>	<03>
<i f="" name="" of="" source="TIMELINE" trigger=""></i>	<24>
<trigger value="09:00:00:00"></trigger>	<09000000>
<connect crosspoint=""></connect>	<42>
$$	<01>
$\langle LEVEL = 1 \rangle$	<01>
<source 3="" ==""/>	<0003>
<destination 7="" ==""></destination>	<0007>

Chapter 2 Routing Switcher Type–specific Messages (virtual machine type is 05h)

General notes

- 1. All parameters described below as "1-byte number" or "2-byte number" are binary coded unsigned numbers.
- 2. Parameters which can be used with Wildcard Characters are indicated by "FFh = all" or "FFFFh = all".
- 3. In all cases, the temporal order of EVENTS must be preserved. Mutually exclusive commands actuated by the EVENT construct, that are placed on the EVENT cue at the same trigger point, will cause both events to cancel.

1. Numerical Index of Keywords, Information Field Names, and Mnemonics

Hex	Message Keyword	(mnemonic)	Hex	Information Field Name	mnemonic)
40h	not used		40h	not used	
41h	not used		41h	MATRIX POINTER	MPOI
42h	CONNECT CROSSPOINT	CONC	42h	LEVEL POINTER	LPOI
43h	DISCONNECT CROSSPOINT	DISC	43h	SOURCE POINTER	SPOI
44h	not used		44h	DESTINATION POINTER	DPOI
45h	not used		45h	not used	
46h	SPECIFIC MUTE		46h	DESTINATIONS-TO-SOURC	E DTOS
47h	not used		47h	SOURCES-TO-DESTINATIO	N STOD
48h	TEST CROSSPOINTS	TESC	48h	CROSSPOINT STATUS	CSTA
49h	not used		49h	SOURCE SIGNAL STATUS	SSTA
4Ah	not used		4Ah	LEVEL CONFIGURATION	LECO
4Bh	not used		4Bh	LEVEL BLOCK STATUS	LEBS
4Ch	not used		4Ch	not used	
4Dh	not used		4Dh	not used	
4Eh	not used		4Eh	SOURCE NAME	SNAM
4Fh	not used		4Fh	DESTINATION NAME	DNAM
60h	PRESET	PRST	60h	not used	

2. Keywords

40h not used

42h CONNECT CROSSPOINT

causes the crosspoint between the specified source (row) and the specified destination (column) in the specified level of the specified matrix to be connected.

Format:	<connect crosspoint=""></connect>			
	<matrix></matrix>	1–byte number	(FFh = all)	
	<level></level>	1–byte number	(FFh = all)	
	<source/>	2-byte number		
	<destination></destination>	2-byte number	(FFFFh = all)	

- Notes: 1. If the matrix is addressed with the wildcard FFh, the crosspoints between specified source and destination in the specified level of all available matrices are connected.
 - 2. If the level is addressed with the wildcard FFh, the crosspoints between specified source and destination in all available levels of the specified matrix are connected.
 - 3. If the destination is addressed with the wildcard FFFFh, the crosspoints between the specified source and all available destinations in the specified level of the specified matrix are connected.
 - 4. More than one parameter may use the wildcard at the same time.

43h DISCONNECT CROSSPOINT

causes the crosspoint between the specified source (row) and the specified destination (column) in the specified level of the specified matrix to be disconnected.

Format: <DISCONNECT CROSSPOINT>

<matrix></matrix>	1-byte number	(FFh = all)
<level></level>	1-byte number	(FFh = all)
<source/>	2-byte number	(FFFFh = all)
<destination></destination>	2-byte number	(FFFFh = all)

- *Notes:* 1. If the matrix is addressed with the wildcard FFh, the crosspoints between specified source and destination in the specified level of all available matrices are disconnected.
 - 2. If the level is addressed with the wildcard FFh, the crosspoints between specified source and destination in all available levels of the specified matrix are disconnected.
 - 3. If the source is addressed with the wildcard FFFFh, a crosspoint that might be set between a source and the specified destination in the specified level of the specified matrix is disconnected.
 - 4. If the destination is addressed with the wildcard FFFFh, all crosspoints that might be set between the specified source and all available destinations in the specified level of the specified matrix are disconnected.
 - 5. More than one parameter may use the wildcard at the same time, e.g. if both source and destination are addressed with the wildcard FFFFh, all crosspoints in the specified level of the specified matrix are disconnected.

45h not used

46h SPECIFIC MUTE

directs the controlled Virtual Machine to switch off all responses previously initiated by a CYCLE or UPDATE command for the specified Information Field.

Format: <SPECIFIC MUTE> <I/F NAME>

Notes: 1. This command supplements the MUTE command of the Common Message set, which is a general mute for all I/Fs.

⁴⁴h not used

2. This command requires the same pre-definitions of the pointers as the UPDATE or CYCLE command it is intended to cancel.

47h not used

48h TEST CROSSPOINT

causes the crosspoint between the specified source (row) and the specified destination (column) in the specified level of the specified matrix to be tested; the test result may be interrogated by READing the Information Field CROSSPOINT STATUS.

Format:	<test crosspoint=""></test>			
	<matrix></matrix>	1-byte number	(FFh = all)	
	<level></level>	1-byte number	(FFh = all)	
	<source/>	2-byte number	(FFFFh = all)	
	<destination></destination>	2-byte number	(FFFFh = all)	

- Notes: 1. If the matrix is addressed with the wildcard FFh, the crosspoints between specified source and destination in the specified level of all matrices are tested.
 - 2. If the level is addressed with the wildcard FFh, the crosspoints between specified source and destination in all levels of the specified matrix are tested.
 - 3. If the source is addressed with the wildcard FFFFh, the crosspoints between all sources and the specified destination in the specified level of the specified matrix are tested.
 - 4. If the destination is addressed with the wildcard FFFFh, the crosspoints between the specified source and all destinations in the specified level of the specified matrix are tested.
 - 5. More than one parameter may use the wildcard at the same time, e.g. if both source and destination are addressed with the wildcard >FFFFh, all crosspoints in the specified level of the specified matrix are tested.

50h to 5Fh not used

60h PRESET

presets the named Information Field to the given value.

Permitted Information Field names for Routing Switchers are:

MATRIX POINTER LEVEL POINTER SOURCE POINTER DESTINATION POINTER SOURCE NAME DESTINATION NAME

Information Fields 3.

Notes: 1. The items of the Information Field are accessed by the Common messages:

READ, UPDATE, CYCLE or SIMULTANEOUS READ

These commands use the format:

<KEYWORD><PARAMETER NAME>

where the PARAMETER NAME uses the Information Field Name specified below.

Though several Parameter Names may be grouped together by means of a BEGIN/END construct, the command does not allow for carrying additional parameters in order to specify which item of a multidimensional Information Field shall be accessed.

Such additional information must therefore be transmitted in advance by presetting one or more pointers e.g. MATRIX POINTER, LEVEL POINTER, SOURCE POINTER, DESTINATION POINTER.

2. The items of the Information Field are tallied by the Common Messages:

I/F RESPONSE or SIMULTANEOUS READ RESPONSE

These commands use the format:

<KEYWORD><PARAMETER NAME><PARAMETER VALUE>

where the PARAMETER VALUE carries the Information Field contents specified below.

The parameters that subdefine the individual item of a multidimensional Information Field, e.g. MATRIX POINTER, LEVEL POINTER, etc., are carried within the Parameter Values. Therefore the content of the Pointers is of no effect in the instant when an Information Field is tallied.

Several names/values may be grouped together by means of a BEGIN/END construct.

- 3. Multidimensional Information Fields and their corresponding Pointers are individually noted in the description below.
- 40h not used

41h MATRIX POINTER

defines a pointer to a matrix.

Format:	<matrix pointer=""></matrix>
	<matrix></matrix>

1-byte number (FFh = all matrices)

Note: If this field is PRESET to the wildcard FFh, a READ command referring to this pointer will result in multiple I/F RESPONSES for all available matrices.

42h LEVEL POINTER

defines a pointer to a level of the matrix specified in the MATRIX POINTER I/F.

Format:	<level pointer=""> <level></level></level>	1-byte number	(FFh = all levels)
Note:	If this field is PRESET to the result in multiple I/F RESPO		READ command referring to this pointer will le levels.

43h SOURCE POINTER

defines a pointer to a source (row) in the level (specified in the LEVEL POINTER I/F) of the matrix (specified in the MATRIX POINTER I/F).

Format: <SOURCE POINTER>

<SOURCE> 2-byte number (FFFFh = all sources)

Note: If this field is PRESET to the wildcard FFFFh, a READ command referring to this pointer will result in multiple I/F RESPONSES for all available sources.

44h DESTINATION POINTER

defines a pointer to a destination (column) in the level (specified in the LEVEL POINTER I/F) of the matrix (specified in the MATRIX POINTER I/F).

- Format: <DESTINATION POINTER> <DESTINATION> 2-byte number (FFFFh = all destinations)
- *Note:* If this field is PRESET to the wildcard FFFFh, a READ command referring to this pointer will result in multiple I/F RESPONSES for all available destinations.
- 45h not used

46h DESTINATIONS-TO-SOURCE

indicates all destinations (columns) in a specified level of a specified matrix that are currently connected to a specified source (row).

Format:	<destinations-to-so <matrix> 1-byte numb</matrix></destinations-to-so 	
	<level></level>	1-byte number
	<source/>	2-byte number specifying the source
	<parameter count=""></parameter>	2-byte number specifying the number n of parameters following
	<destination 1=""></destination>	2-byte number specifying the 1st
		destination connected to the source
	<destination n=""></destination>	2–byte number specifying the <i>n</i> th
		destination connected to the source

- Notes: 1. Parameter Count = 0 means: no connection.
 - 2. Accessing this I/F requires the I/Fs MATRIX POINTER, LEVEL POINTER, and SOURCE POINTER to be PRESET in advance.

47h SOURCES-TO-DESTINATION

indicates all sources (rows) in a specified level of a specified matrix that are currently connected to a specified destination (column).

Format:	<sources-to-destin< th=""><th>ATION></th></sources-to-destin<>	ATION>
	<matrix></matrix>	1–byte number
	<level></level>	1–byte number
	<destination></destination>	2-byte number specifying the destination
	<parameter count=""></parameter>	2-byte number specifying the number n of parameters following
	<source 1=""/>	2-byte number specifying the 1st
		source connected to the destination
	<source <i=""/> n>	2–byte number specifying the <i>n</i> th
		source connected to the destination

Notes: 1. Parameter Count = 0 means: no connection.

2. Accessing this I/F requires the I/Fs MATRIX POINTER, LEVEL POINTER, and DESTINATION POINTER to be PRESET in advance.

48h CROSSPOINT STATUS

gives a list of the bad crosspoints corresponding to a specified destination (column) in a specified level of a specified matrix.

Format:	<crosspoint status=""></crosspoint>	
	<matrix></matrix>	1–byte number
	<level></level>	1–byte number
	<destination></destination>	2-byte number
	<parameter count=""></parameter>	2–byte number specifying the number <i>n</i> of parameters following
	<source 1=""/>	2-byte number specifying the 1st of a list of bad crosspoints
	<source <i=""/> n>	2-byte number specifying the <i>n</i> th
		and last one of a list of bad crosspoints

Notes: 1. *Parameter Count* = 0 *means: no bad crosspoints.*

2. Accessing this I/F requires the I/Fs MATRIX POINTER, LEVEL POINTER, and DESTINATION POINTER to be PRESET in advance.

49h SOURCE SIGNAL STATUS

indicates the signal quality of a specified source in a specified level of a specified matrix.

Format:	<source signal="" status=""/>	
	<matrix></matrix>	1–byte number
	<level></level>	1-byte number
	<source/>	2-byte number
	<code></code>	1-byte special binary code:
		00h = good
		else = bad (details may be reported using user-defined codes)

Note: Accessing this I/F requires the I/Fs MATRIX POINTER, LEVEL POINTER, and SOURCE POINTER to be PRESET in advance.

4Ah LEVEL CONFIGURATION

describes the start-up configuration in the specified level of the specified matrix by first defining the rectangular limits of the level and then detailing crosspoint blocks (typically card-related) which do not exist.

Format:	<level configuration=""></level>			
	<matrix></matrix>	1–byte number		
	<level></level>	1–byte number		
	<first source=""></first>	2–byte number		
	<last source=""></last>	2–byte number rectangular limits		
	<first destination=""></first>	2–byte number of the level		
	<last destination=""></last>	2–byte number		
	<parameter count="" group=""></parameter>	1–byte number specifying the number <i>n</i>		
		of parameter groups following		
	<source# beg="" block="" of=""></source#>	2–byte number		
	<source# block="" end="" of=""></source#>	2–byte number data of 1st non–		
	<dest# beg="" block="" of=""></dest#>	2–byte number existent block		
	<dest# block="" end="" of=""></dest#>	2–byte number)		
	<source# beg="" block="" of=""></source#>	2–byte number		
	<source# block="" end="" of=""></source#>	2–byte number data of <i>n</i> th non–		
	<dest# beg="" block="" of=""></dest#>	2–byte number existent block		
	<dest# block="" end="" of=""></dest#>	2–byte number		
N7 /				

Note: Accessing this I/F requires the I/Fs MATRIX POINTER and LEVEL POINTER to be PRESET in advance.

4Bh LEVEL BLOCK STATUS

reports blocks of crosspoints (typically card-related) in the specified level of the specified matrix that are detected by the controlled Virtual Machine as missing relative to the start-up configuration.

Format:	<level block="" status=""> <matrix> <level> <parameter count="" group=""></parameter></level></matrix></level>	1-byte number1-byte number1-byte number specifying the number <i>n</i> of parameter groups following
	<source# beg="" block="" of=""> <source# block="" end="" of=""> <dest# beg="" block="" of=""> <dest# block="" end="" of=""></dest#></dest#></source#></source#>	2-byte number 2-byte number 2-byte number 2-byte number 2-byte number
	 <source# beg="" block="" of=""> <source# block="" end="" of=""> <dest# beg="" block="" of=""> <dest# block="" end="" of=""></dest#></dest#></source#></source#>	2-byte number 2-byte number 2-byte number 2-byte number

Notes: 1. Parameter Group Count = 0 means: no faulty blocks

- 2. Accessing this I/F requires the I/Fs MATRIX POINTER and LEVEL POINTER to be PRESET in advance.
- 4Ch not used
- 4Dh not used
- 4Eh SOURCE NAME

Format:

contains the name of the specified source in the specified level of the specified matrix.

:	<source name=""/>	
	<matrix></matrix>	1-byte number
	<level></level>	1-byte number
	<source/>	2-byte number
	<character count=""></character>	2–byte number specifying the number <i>n</i> of characters following
	<character 1=""></character>	1-byte ASCII code; 1st character
	 <character <i="">n></character>	1-byte ASCII code; <i>n</i> th character

- Notes: 1. This I/F can be PRESET by the controlling Virtual Machine and is to be used only for displaying the names at the switcher, where applicable.
 - 2. Accessing this I/F requires the I/Fs MATRIX POINTER, LEVEL POINTER, and SOURCE POINTER to be PRESET in advance.

4Fh DESTINATION NAME

contains the name of the specified destination in the specified level of the specified matrix.

Format: <DESTINATION NAME>

<matrix></matrix>	1–byte number
<level></level>	1–byte number
<destination></destination>	2-byte number
<character count=""></character>	2–byte number specifying the number <i>n</i> of characters following
<character 1=""></character>	1-byte ASCII code; 1st character
 <character <i="">n></character>	1-byte ASCII code; <i>n</i> th character

- *Notes: 1. This I/F can be PRESET by the controlling Virtual Machine and is to be used only for displaying the names at the switcher, where applicable.*
 - 2. Accessing this I/F requires the I/Fs MATRIX POINTER, LEVEL POINTER, and DESTINATION POINTER to be PRESET in advance.

Reproduction, even in part, of this publication is forbidden except with the prior written authority of the publisher.