

The JE-MB-E is a 1:1:1:1 turns ratio microphone bridging transformer with a single primary and three secondary windings, each surrounded with its separate Faraday shield.

The JE-MB-E can be used to bridge a balanced microphone line, which is terminated with a balanced preamplifier input, to feed three additional balanced preamplifier inputs.

The transformer, with separate Faraday shields for each winding, isolates and rejects the common-mode noise caused by the noise voltage difference between the chassis of the multiple mixers. With this type of isolation, the microphone shield can be connected through to the chassis of one mixer but need not be connected through to the additional mixer chassis. Instead, the chassis (shields) of the additional mixers connect only to the Faraday shield of the appropriate secondary. This eliminates the ground loops which would be caused if the microphone shield were connected through to multiple mixers.

Phantom power can be provided by the mixer which terminates the microphone directly.

The design is optimized for a source impedance at the primary of 150 ohms (microphone) and secondary loads of 1000 ohms (typical microphone preamplifier input impedance). No resistors are used in the usual application of a "mic-split box."

The primary winding is interleaved equally with each secondary winding for matched transfer characteristics to each secondary and to minimize variations in response with unloaded secondaries.

If cables with the shell connected to pin 1 (shield) are used in the system, insulated mounting will be required for the connectors.

REGARDING THE OSCILLOSCOPE PHOTOS

Actual oscilloscope photos were made from a Tektronix Model 453A (certified calibration). Left column is transformer with secondary termination network and right column includes a 2 microsecond amplifier.

2 kHz Square Wave

50μ S/division

5μ S/division

All curves were generated by a Hewlett-Packard 9815A/9862A programmable calculator/ plotter. All calculations were either derived from or verified by actual measurements. The distortion measurements employed a Sound Technology 1710A Analyzer. Verified accuracies are on the order of one pen-line width.

DISTORTION

SECONDARY SOURCE IMPEDANCE

FREQUENCY RESPONSE

PHASE RESPONSE

GENERAL CHARACTERISTICS

Turns Ratio
1:1:1:1 (3 secondaries)
Impedance Ratio
150/150/150/150
Primary Source Impedance 150 ohms
Secondary Load Impedances 1 K ohms (mic pre-amps)
Secondary Load Resistors None required
Secondary RC Networks None required
Four Faraday Shields Separate lead's
Magnetic Shield
30 dB , separate case lead
Maximum Input Level at $\mathbf{2 0 H z}$ +11 dBv (Re: 0.775 v)

PHYSICAL CHARACTERISTICS

Package
Mu-metal can
Termination

Wire leads

Dimensions
1-5/16" diameter, 1-9/16" high

Mounting

2 holes, $0.7^{\prime \prime}$ center-to-center, self-tapping screws or clamp
TYPICAL PERFORMANCE
Total Harmonic Distortion (Below Saturation)
0.05% maximum @ 20Hz
0.03% maximum @ 30Hz
0.015% maximum @ 50 Hz 0.002\% @ 1 kHz

Input Level @ 1\% Saturation (dBv Re: 0.775v)
+10 dBv @ 20Hz
+14 dBv @ 30 Hz
+19 dBv @ 50 Hz
Common-Mode Voltage (maximum) $>200 \mathrm{v}$ peak
Common-Mode Rejection Ratio
$>85 \mathrm{~dB}$ @ 1 kHz
$>65 \mathrm{~dB}$ @ 10 kHz

TYPICAL PERFORMANCE

		Secondary Loads		
		One	Two	Three
Voltage Gain		-1.2dB	-1.8dB	$-2.3 \mathrm{~dB}$
Input Impedance	$\begin{aligned} & @ 1 \mathrm{kHz} \\ & @ 10 \mathrm{kHz} \end{aligned}$	1100 ohms 1170 ohms	610 ohms 640 ohms	430 ohms 460 ohms
Secondary Source Impedance	$\begin{aligned} & @ 1 \mathrm{kHz} \\ & @ 10 \mathrm{kHz} \end{aligned}$	300 ohms 410 ohms	265 ohms 360 ohms	235 ohms 320 ohms
Frequency Response (Re: 1 kHz)	$\begin{aligned} & \text { @ 20Hz } \\ & \text { @ 20kHz } \end{aligned}$	$\begin{aligned} & -0.1 \mathrm{~dB} \\ & -0.6 \mathrm{~dB} \\ & \text { (some } \end{aligned}$	$\begin{aligned} & -0.1 \mathrm{~dB} \\ & -0.4 \mathrm{~dB} \end{aligned}$ onance @ 30	$\begin{aligned} & -0.1 \mathrm{~dB} \\ & \text { z) } \end{aligned}$
Bandwidth	@ -3dB	48 kHz	60 kHz	40 kHz
Phase Response	@ 20kHz	-21°	-16°	-18°
Rise Time	(10\%-90\%)	$6.7 \mu \mathrm{~S}$	$5.3 \mu \mathrm{~S}$	$8.0 \mu \mathrm{~S}$
Overshoot		, <1\%	<1\%	<1\%
Ringing	$>300 \mathrm{kHz}$	<9\%	<11\%	<7\%

Lead Holes
Use $0.35^{\prime \prime}$ hole to clear grommet

MECHANICAL DESIGNERS: Dimensions are approximate. Please have a transformer in hand when laying out panel cutouts.

