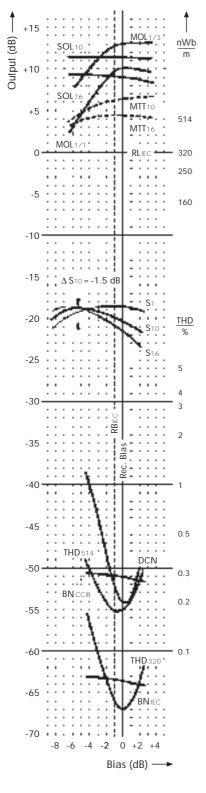
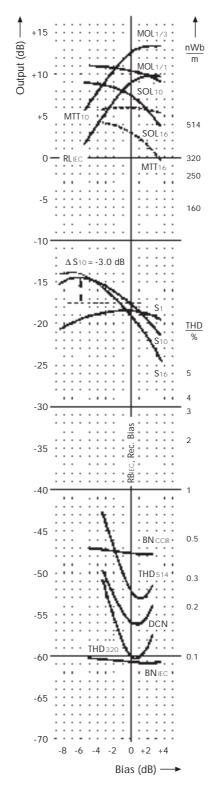
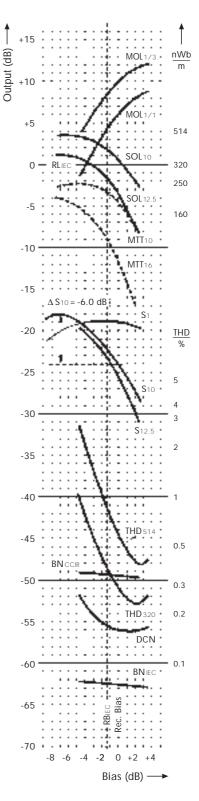

Studio Master 911



Studio tape with wide dynamic range, low print-through and excellent DC noise for analogue recording. Specially designed to fulfill the mechanical requirements of modern multitrack recording.

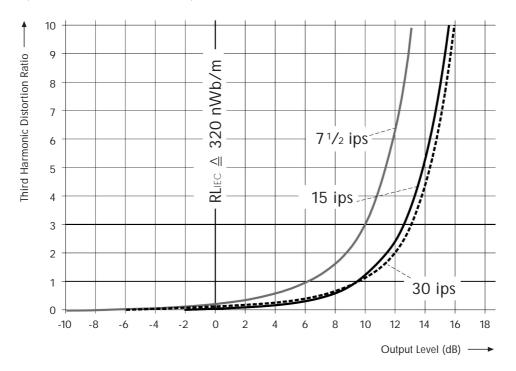



Tape speed	76.2 cm/s
Recording head gap le	ngth 7.0 µm
Playback head gap len	gth 3.0 μm
Equalisation	17.5 μ s
Reference level	320 nWb/m

Tape speed38.1 cm/sRecording head gap length7.0 µmPlayback head gap length3.0 µmEqualisation50 + 3180 µsReference level320 nWb/m

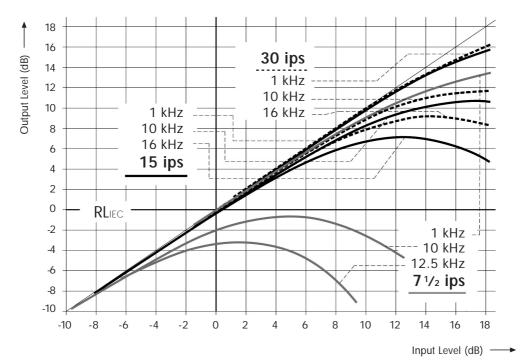
Tape speed19.05 cm/sRecording head gap length $7.0 \mu m$ Playback head gap length $3.0 \mu m$ Equalisation $50 + 3180 \mu s$ Reference level320 nWb/m

05/99


Studio Master 911

05/99

see Notes


1 Measure	ement conditions					
Tape speed		76.2 cm/s 30 ips	38.1 cm/s 15 ips	19.05 cm/s 7.5 ips		
Recording head:	IEC Reference Head Gap length Track width	IEC 7.0 μm 6.3 mm	IEC 7.0 μm 6.3 mm	IEC 7.0 μm 6.3 mm	1.1	
Playback head:	IEC Reference Head Gap length Track width	IEC 3.0 μm 2.575 mm	IEC 3.0 μm 2.575 mm	IEC 3.0 μm 2.575 mm	1.1	
Playback equali RLiec RBiec Rec. Bias	sation Reference level (1 kHz) IEC reference tape: batch IEC reference tape bias definition IEC reference bias Recommended bias setting	17.5 μs 320 nWb/m MT 82472 Min. THD 320 -1.0 dB ±0.0 dB	50 + 3180 µs 320 nWb/m MT 82472 Min. THD 320 ±0.0 dB ±0.0 dB	50 + 3180 μs 320 nWb/m A 342 D Min. THD320 -1.5 dB ±0.0 dB	1.2 1.3 1.4 1.5	
∆ \$ 10	Sensitivity drop for recommended bias setting	-1.5 dB	-3.0 dB	-6.0 dB	1.6	
2 Recordin	g Performance Specifications					
The table below presents the main parameters in the recommended bias setting. All figures given represent nominal values.						
MOL1/3 MOL1/1 SOL10 SOL12.5	Maximum output level at 1 kHz, THD = 3 % Maximum output level at 1 kHz, THD = 1 % Saturation output level at 10 kHz Saturation output level at 12.5 kHz		+9.0 dB	+10.0 dB +6.0 dB +0.5 dB -3.5 dB	2.1 2.1 2.2 2.2	
SOL16	Saturation output level at 16 kHz	+9.0 dB			2.2	
MTL 10 MTL 16	Twin-Tone output level at 10 kHz Twin-Tone output level at 16 kHz	+6.5 dB +4.5 dB		-4.5 dB -12.0 dB	2.3 2.3	
S 1 S 10 S 12.5 S 16	Relative tape sensitivity at 1 kHz Relative tape sensitivity at 10 kHz Relative tape sensitivity at 12.5 kHz Relative tape sensitivity at 16 kHz	+1.5 dB +1.5 dB +1.5 dB	+2.5 dB	+1.0 dB +0.5 dB +0.5 dB	2.4 2.4 2.4 2.4	
THD 320 THD 320 THD 514 THD 514	Third harmonic distortion level at 320 nWb Third harmonic distortion ratio at 320 nWb Third harmonic distortion level at 514 nWb Third harmonic distortion ratio at 514 nWb	o/m 0.04 % o/m -55.0 dB	0.10 % -52.0 dB	-51.0 dB 0.28 % -44.5 dB 0.59 %	2.5 2.5 2.5 2.5	
DCN BN iec BN ccir MOL/BN iec MOL/BN ccir P	DC noise, weighted, rel. RLIEC Bias noise level (IEC 94; A curve) Bias noise level (CCIR 468-3) Signal to bias noise ratio at 1 kHz Signal to bias noise ratio at 1 kHz Print through level	-54.0 dB -63.5 dB -51.0 dB 76.5 dB 64.0 dB 58.0 dB	-60.5 dB -47.5 dB 73.0 dB 60.0 dB	-56.0 dB -62.5 dB -49.5 dB 72.5 dB 59.5 dB 57.0 dB	2.6 2.7 2.7 2.8 2.8 2.9	
3 Magnetic Properties						
Hc Brs Фrs/w	Coercivity Retentivity Residual Saturation fluxivity	25.5 kA/m 145 mT 2320 nWb/m		320 Oe 1450 G 232 mM/mm	3.1 3.2 3.3	
•	Properties					
Base material Tape width Tolerances of tape width Base thickness Coating thickness Total thickness Matt back		Polyester 6.3 / 12.7 / 25.4 / +0/-0.06 mm 30.0 µm 16.0 µm 50.0 µm	/50.8 mm	1/4, 1/2, 1, 2 inch +0/-0.0024 inch 1.2 mil 0.6 mil 2.0 mil	4.1 4.1 4.1	
Matt back Surface resistance of magnetic coating Surface resistance of matt back Coefficient of thermal expansion ($\Delta L/L$)/°C Coefficient of humidity expansion ($\Delta L/L$)% RF		black ≤ 3.5 •10 ⁴ MΩ/□ ≤ 35 kΩ/□ 2 •10 ⁻⁵ 1 •10 ⁻⁵		≤35 GΩ/□	4.2 4.2 4.3 4.4	
Load for elongation of 3 %, F32Breaking tensile strength2Static tensile strength per 6.3 mm tape width2		26 N ≥ 70 N ≥ 14 N ≥ 30 N		2.6 kp ≥ 7 kp ≥ 1.4 kp ≥ 3.0 kp	4.5 4.6 4.7 4.7	

05/99

Output level versus Third Harmonic Distortion Ratio at frequency 1 kHz and tape speeds 30 ips (76.2 cm/s), 15 ips (38.1 cm/s) and 7¹/₂ ips (19.05 cm/s). See also Notes, points 2.1 and 2.5.

Input Level versus Output Level at frequencies 1 kHz, 10 kHz and 16 kHz (12.5 kHz at $7\frac{1}{2}$ ips) and tape speeds 30 ips (76.2 cm/s), 15 ips (38.1 cm/s) and $7\frac{1}{2}$ ips (19.05 cm/s). See also Notes, point 2.2.

BASF Studio Tapes – A history of Expanding Expertise

Magnetic audio recording is an American invention. Oberlin Smith, a mechanical engineer from Bridgeton, New Jersey, USA, worked out the basics of the process in 1878 and conducted the first experiments. Ten years later, he reported on his findings in the trade magazine "The Electrical World". The first functioning magnetic recording devices, first built in 1898 by the Danish telephone engineer Valdemar Poulsen, used steel wire, steel tapes and even plated steel discs. Steel wire recorders continued to play a minor role in magnetic audio recording into the 1950's, although never achieving very wide acceptance.

Magnetic tape, as we know it today, was invented in Germany. In 1928, the Austrian-born paper specialist Fritz Pfleumer developed the first magnetic tape recorder using 16 mm (2/3 inch) paper tape covered with a powdered iron coating. AEG in Berlin, one of the largest European electrical firms of its day, expressed interest in the system. A team of engineers which started developing machines realised very quickly that the manufacture of a workable was beyond the capability of AEG. Therefore, IG Farben's Ludwigshafen works (better known as BASF) was called in. And thus, more than 60 years ago BASF became the world's first manufacturer of magnetic tape. The first results were ready by 1934: a tape coated with carbonyl iron as the magnetic pigment on an acetyl cellulose base met the AEG specification. In 1935 the "Magnetophon K1" and the "Magnetophonband Type C' were were premiered successfully at the Great German Radio Exhibition in Berlin. In the following year, 1936, carbonyl iron was replaced by magnetite (Fe₃O₄). Since 1939, iron oxide γ -Fe₂O₃ serves as magnetic material and is still used today but has since been continually improved.

With the introduction of AC biasing in 1940, magnetic tape recording technology had advanced (in its German home, at least) to become the highest quality recording medium available. As of 1941, the film manufacturer Agfa Wolfen also began to show great interest in magnetic audio recording since magnetic tape recording promised superior sound quality for the first German color movies. When the tape factory in Ludwigshafen was destroyed in 1943, tests in Wolfen were so far advanced that Agfa was able to become the second German magnetic tape manufacturer. During the post-war years, production was transferred, at least in part, to Leverkusen and Munich where a constantly growing assortment of magnetic tapes

was developed and made. In 1991, Agfa's magnetic tape production joined BASF to form BASF Magnetics GmbH. This provided an excellent opportunity to combine the very best tape types and the most advanced dispersion and coating technologies from both companies. BASF Magnetics GmbH thus inherited superior quality products and processes from each of the two development lines.

Today, BASF Magnetics is one of the world's leading magnetic media manufacturers. Parallel to audio and video pancakes, which form the broadest segment of the product line, a highly developed, thoroughly tested and proven range of analogue and digital studio tapes is offered. Decades of experience, continuous and on-going development as well as close interaction with customers results in reliable, high-quality products that meet and surpass even the most demanding professional requirements.

To produce analogue magnetic tape requires an enormous sense of responsibility, both to the recording artist and the purchasing public. The logical choice of the right tape means that several quality parameters must be carefully considered simultaneously. The trouble-free interaction of the recording performance and the mechanical properties of a tape and the often overlooked requirement for decade-long archivability are the ultimate factors in determining tape quality. Here, BASF Magnetics has an advantage of more than 60 years of practical experience leading to a fully developed and mature product line with finely balanced characteristics and outstanding reliability.

German broadcasters have traditionally produced programming using tape wound only on hubs alone, meaning without the protective flanges of closed NABtype reels. This means that LGR 50 and PER 528 broadcast tapes must meet stringent requirements in daily operations, especially where winding properties are concerned, something both tapes accomplish easily. The knowledge gained in this area has also benefited the winding characteristics of studio tapes. The strict regulations concerning tape print-through set down by European broadcasters are fulfilled by BASF Magnetics by limiting magnetic pigment use to only those oxides with low printthrough. Simultaneously, these provide high output levels across the entire frequency bandwidth. BASF tapes can trace their excellent reputation to this remarkable combination of superior recording performance properties and mechanical quality.

Notes

The data in this publication are based on test methods of IEC Publication 94, Part 5. In as far as any test method is not part of this publication, DIN methods have been used.

1.1 Measurement method according to IEC 94, using the IEC standard reference heads. Recording heads with a gap length of 7 μm are recommended.

1.2 Playback equalization on the tape testing equipment is adjusted to provide a flat frequency response of the output voltage when compared with the frequency response section of the appropriate IEC calibration tape (time constants $t1 = 17.5 \,\mu s$ at tape speed 76.2 cm/s, t_1 and $t_2 = 50 + 3180 \,\mu s$ at tape speeds 38.1 cm/s and 19.05 cm/s).

1.3 RLiec (Reference Level): The reference level 320 nWb/m corresponds with the reference level section of the IEC calibration tape used.

1.4 IEC reference bias definition: Using the relevant IEC calibration tape and the standard reference heads, the bias current providing the maximum third harmonic distortion ratio at the reference level (signal frequency 1 kHz) is the reference bias setting.

1.5 RB $\$ (IEC reference bias): This data represents the reference bias ratio of the tape under test and the relevant IEC reference tape at 76.2 cm/s, 38.1 cm/s and 19.05 cm/s respectively.

1.6 ΔS_{10} (Sensitivity drop for recommended bias setting): Operationally, the recommended bias is set with an input signal of 10 kHz at -20 dB. Based on the sensitivity curve S₁₀ peak, the bias is increased until the playback level is reduced by the given value ΔS_{10} (see curve).

2.1 MOL_{1/3}, MOL_{1/1} (maximum output level): Output level at 1 kHz relative to reference level RLIEC, with a third harmonic distortion ratio of 3 % (1 %) or THD = -30.5 dB (-40.0 dB) (Point 2.5).

2.2 SOL10, SOL12.5, SOL16 (saturation output level): Output level at 10 kHz, 12.5 kHz or 16 kHz respectively, at which saturation occurs, relative to reference level RL_{EC} .

2.3 MTL10, MTL16 (maximum twin tone level): Playback level using a twin tone signal (10,000/10,040 Hz or 16,000 /16,040 Hz respectively) relative to reference level RLIEC, characterised by a side band distortion of 4.7 % (IEC 94, part 5). At this level the annoyance of distortions is comparable to a third harmonic distortion of 3 % at low frequencies (MOL1/3). As opposed to the saturation method of measurement, the MTL curves show the actually usable output of the tape.

2.4 S₁, S₁₀, S_{12.5}, S₁₆ (Sensitivity): The sensitivity curves were recorded using a constant current with no equalisation. The magnetic tape's 1 kHz input signal is approximately 20 dB below the reference level RLEC. In accordance with IEC publication 94 the values for relative tape sensitivity refer to those of the relevant reference tape (batch MT 82472 or A 342 D resp.) at its own reference bias. – The distance between the sensitivity curves S₁ and S₁₀, S_{12.5}, or S₁₆ resp. reflects the recording equalisation necessary to achieve a flat frequency response.

2.5 THD $_{\rm 320},$ THD $_{\rm 514}$ (Third harmonic distortion level): The diagram shows the third harmonic distortion level and the third harmonic distortion ratio (of a 1 kHz signal) at a constant magnetisation of 320 nWb/m or 514 nWb/m.

PROFESSIONAL AUDIO VIDEO

Studio Master 911

2.6 DCN (DC noise level): According to IEC 94 a direct current is recorded which is equal to the RMS value of the signal current that is required to produce IEC reference level RLIEC. Using reference bias RBIEC, measurement of DC noise level is made using an RMS meter and a weighting filter network according to IEC 94, part 5, appendix 4.

2.7 BNIEC, BNICCIR (Bias Noise Level): The bias noise level is measured after operational erasure and HF biasing have been applied and compared to the reference level RLIEC. BNIEC is measured after weighting with an A filter in accordance with IEC 651. BNICCIR is given as a quasi peak reading following filter weighting in accordance with CCIR 468-3 (as in IEC 94, part 5, point 3.4).

2.8 MOL/BNIEC, MOL/BNIEC (Dynamic): The signal to bias noise level ratio MOL/BNIEC results from the addition of the maximum output level at 1 kHz MOL1/3 and the bias noise level BNIEC. In the same manner, MOL/BNICCIR is the result of adding MOL1/3 at 1 kHz and BNICCIR.

2.9 P (Print-through level): Print-through level is the ratio of a reference level recording to the highest signal level transfered to the next tape layer over 24 hours when stored at 20 °C.

3.0 The measurements are made by means of a magnetic field having a strength of 100 kA/m (equal to 1,250 Oe).

3.1 Hc (Coercivity): The coercitive field strength is the magnetic field strength that saturated magnetic material exerts in a magnetically neutral situation.

3.2 BRs (Retentivity): The remanent saturation flux is the remaining tape flux after the magnetic material has been subjected to saturation magnetisation.

3.3 $\Phi_{\rm RS/w}$ (Residual Saturation fluxivity): The residual saturation fluxivity is the retentivity times the coating cross-section area.

4.1 Thicknesses: Values given are mean averages.

4.2 Surface resistance: According to IEC 94, part 4, the magnetic tape's side to be measured is placed over two measuring devices separated by the width of the tape. The resistance of the measured segment is given in megohms.

4.3 The coefficient of thermal expansion measures the tape's expansion when the temperature increases by 1 °C.

4.4 The coefficient of humidity expansion measures the tape's expansion when the relative humidity increases by 1 %.

4.5 Yield strength (F₃, 3 %): According to IEC 735, the force necessary to produce 3 % elongation is evaluated using a sample test length of 200 mm and an elongation rate of 100 mm/min.

4.6 Breaking tensile strength is the force to get the breaking point of a tape sample, according to IEC 735.

4.7 $\,$ Static and dynamic tensile strength are measured according to DIN 45 481.

All data given in the specification are subject to change without prior notice due to technical progress.

P.O.B. 21 01 69 · D-67001 Ludwigshafen Phone +49 (0)621 59 20-341 Fax +49 (0)621 59 20-375

http://www.emtec-magnetics.com wiltrud.gambato@emtec-magnetics.com

05/99